Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой ("иммерсио" - погружение) В состав иммер­сионной системы входит иммерсионный объектив (х90) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку по­казатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необ­ходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в ок­рашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клет­ки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно круп­ных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х40 или х8) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля".

Измерение микробов.

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10-6м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в оку­ляр прозрачную линейку).

• Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп имеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть от­раженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнополъную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".

• Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличие от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участ­ков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

• Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изо­бражения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении ко­ротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цвет­ное изображение, обнаружить малое количество микробов, изучить их структуру и химический со­став, использовать метод иммунофлюоресценции.

• Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей спо­собностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стек­лянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.