КИСЛОТНО-ОСНОВНЫЕ ИНДИКАТОРЫ

Точка эквивалентности при реакции нейтрализации не сопровождается каким-либо внешним изменением, поэтому для определения конца реакции применяются специальные индикаторы. В точке эквивалентности происходит изменение рН раствора. Поэтому индикаторы, применяемые при кислотно-основном титровании, представляют собой органические соединения, окраска которых меняется в зависимости от концентрации ионов водорода в растворе. Это так называемые кислотно-основные индикаторы, или рН-индикаторы. Для объяснения изменения окраски индикаторов имеется несколько теорий.

Теория Оствальда была предложена в 1891 г. Согласно этой теории, каждый рН-индикатор должен диссоциировать как слабая кислота или слабое основание; кроме того, один из ионов, образующихся при диссоциа­ции индикатора, должен быть окрашенным, причем его окраска должна быть другая, чем окраска недиссоциированной молекулы.

Представим себе, что индикатор Hind обладает свойствами слабой кислоты и диссоциирует по уравнению:

Hind Н+ + Ind¯

Поскольку индикатор является слабой кислотой, при небольших значениях рН он будет находиться в растворе в недиссоциированном состоянии и иметь окраску, соответствующую цвету недиссоциированных молекул. Если прибавить к водному раствору индикатора немного сильного основания, например NaOH, ионы ОН¯ будут соединяться с ионами Н+ индикатора, образуя молекулу воды. Вследствие изменения концентрации ионов Н+ равновесие диссоциации индикатора сдвигается вправо, в сторону образования свободных ионов. При добавлении некоторого количества щелочи концентрация недиссоциированных молекул Hind будет так мала, что их окраска станет незаметной, и раствор окрасится в другой цвет — цвет свободных ионов Ind¯.

Прибавление к полученному раствору кислоты приведет к повышению концентрации ионов Н+ и сдвигу равновесия влево, в сторону образования недиссоциированных молекул. В связи с этим исчезнет окраска, свойственная ионам Ind¯, и появится окраска недиссоциированных молекул Hind.

Хромофорная теория. В действительности механизм изменения окраски индикаторов более сложен, чем предполагал Оствальд. Позднейшие исследования ряда ученых показали, что окраска органических соединений (а индикаторы являются сложными органическими соединениями) обусловлена наличием в его молекуле определенных групп, называемых хромофорами. К хромофорным группам относятся

· Азогруппа —N=N—,

· нитрогруппа

 

· нитрозогруппа —N=О,

 

· хиноидная группировка и др.

 

Кроме хромофоров, в окраске органических соединений грают важную роль ауксохромы. Это группы, присутствие которых в молекуле органического соединения усиливает его окраску. К ауксохромам относятся группы —NH,

—ОН и др.

Согласно хромофорной теории, окраска органических соединений зависит от строения молекулы. Вследствие внутримолекулярной перегруппировки изменяется строение молекулы индикатора, а, следовательно, меняется окраска соединения. Бензольная система переходит в хиноидную:

и т. Д.

Азогруппа —N=N— в определенных условиях переходит в группу =N–NH– и т. Д. Эти перегруппировки внутри молекулы оказываются причиной изменения окраски индикатора.

Превращение таутомерных форм друг в друга у индикаторов является обратимым процессом. В растворе любого индикатора присутствуют различные его формы, находящиеся в равновесии друг с другом.

Изменение строения индикаторов происходит при добавлении к растворам кислот или щелочей, т. Е. при изменении концентрации ионов водорода в растворах. Это происходит потому, что хотя индикаторы не являются электролитами, как предполагал Оствальд, они могут диссоциировать с образованием ионов Н+ (или ОН¯),

Таким образом, в растворе индикатора, наряду с равновесием между таутомерными формами (1) существует равновесие диссоциации (2):

RH(1)HR' (2)H++R¯

 

Радикалы R и R' отличаются друг от друга внутренним строением, они содержат разные хромофорные группы и формы RH и R'H отличаются окраской. Причем окраска иона R'¯ такая же, как и молекулы HR', так как при диссоциации внутреннее строение не изменяется.

Прибавление щелочи вызывает уменьшение концентрации ионов Н+. Вследствие этого происходит сдвиг равновесия слева направо и превращение формы RH в форму HR', а, следовательно, изменение окраски.

Прибавление кислоты вызывает увеличение концентрации ионов Н+, равновесие сдвигается влево, происходит превращение формы HR' в RH и изменение окраски.

В качестве примера приведем изменение строения и окраски индикаторов фенолфталеина:

 

 

и метилового оранжевого:

В растворе индикаторов, как указывалось выше, существует равновесие. В кислой среде в растворе находится таутомерная форма, которую мы назовем кислотной формой, а в щелочной — щелочная форма. Эти формы имеют различную окраску.

Интервал перехода окраски индикатора у разных индикаторов находится при разных концентрациях ионов водорода. Область значения рН раствора, в которой происходит заметное изменение окраски индикатора называется областью перехода индикатора. Например, область перехода индикатора метилового оранжевого находится в пределах рН от 3,1 до 4,4. При рН>4,4 метиловый оранжевый— желтый, при рН<3,1— розовый, в интервале от рН 3,1 до рН 4,4 окраска его постепенно изменяется из розовой в желтую. Другой индикатор—фенолфталеин при рН<8 бесцветный, в интервале рН от 8,0 до 10,0 окраска из бледно-розовой постепенно переходит в ярко-малиновую. Область перехода индикатора метилового красного от рН 4,4 до рН 6,2.. При рН<4,4 этот индикатор красный, при рН>6,2 — желтый.

В каждом случае титрование заканчивается в момент резкого изменения окраски индикатора. Значение рН, при котором происходит наиболее резкое изменение индикатора, называется показателем титрования. Следовательно, показатель титрования есть то значение рН, от которого мы титруем раствор с данным индикатором. Так, показатель титрования для фенолфталеина примерно равен 9,0, т. Е. при этом значении рН мы особенно четко замечаем изменение окраски и заканчиваем титрование. Показатель титрования метилового оранжевого равен 4,0.

Так как конец реакции определяется с помощью индикаторов, необходимо для каждого определения пра­ильно выбрать индикатор, так чтобы его показатель титрования был как можно ближе к рН точки эквивалентности в данном определении. Необходимо помнить, что если определяют содержание какого-либо вещества по методу нейтрализации, титр рабочего раствора должен быть установлен с тем индикатором, с каким будет производиться определение.

Необходимо помнить также, что на показания индикаторов влияют ряд факторов:

1) температура—с увеличением температуры у индикатора меняется область перехода и может меняться интенсивность окраски, поэтому все определения по методу нейтрализации проводят при комнатной температуре:

2) посторонние примеси — заметное количество нейтральных солей, веществ, легко переходящих в коллоидное состояние, некоторых органических растворителей искажают результаты титрования;

3) количество индикатора — чем больше индикатора, тем труднее заметить изменение окраски.

Из всего сказанного можно сделать вывод: