Полезное увеличение микроскопа

 

Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью использовать разрешающую способность микроскопа, необходимо иметь соответствующее видимое увеличение.

 

Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза.

 

Если две точки в передней фокальной плоскости микроскопа расположены друг от друга на расстоянии , то угловое расстояние между изображениями этих точек . Из выражений (6.11) и (6.8) можно вывести видимое увеличение микроскопа:. (6.12)

 

Поскольку обычно диаметр выходного зрачка микроскопа около 0.5 – 1 мм, угловой предел разрешения глаза 2´ – 4´. Если взять среднюю длину волны в видимой области спектра (0.5 мкм), то для полезного увеличения микроскопа можно вывести зависимость: . (6.13)

 

Микроскоп с видимым увеличением меньше 500А не позволяет различать глазом все тонкости структуры предмета, которые изображаются как раздельные данным объективом ( ). Использование видимого увеличения больше 1000А нецелесообразно, так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза ( )

 

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ оптических приборов, характеризует их способность давать раздельные изображения двух близко расположенных точек. Из-за дифракции света изображение точки представляет собой не строго точку, а кружок (светлое пятно, окруженное кольцами). Наименьшее угловое или линейное расстояние между двумя точками, при котором система дает их раздельное изображение, называется пределом разрешения и характеризует границы применимости геометрической оптики. Обратная величина есть разрешающая способность, которая прямо пропорциональна апертуре прибора; поэтому для повышения разрешающей способности оптические телескопы имеют большой диаметр объектива. Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа.

 

4.

 

Иммерсия в микроскопии — это введение между объективом микроскопа и рассматриваемым предметом жидкости для усиления яркости и расширения пределов увеличения изображения.

 

оптическая система, в которой пространство между первой линзой и предметом заполнено жидкостью. Применяемая так жидкость называется иммерсионной.

Принцип действия

 

Из основной формулы разрешающей способности микроскопа: d = 0,61/А, следует, что предел разрешения определяется длиной волны и числовой апертурой объектива А. Так как не всегда возможно изменить длину волны, то для достижения лучшего разрешения стремятся применять объектив, имеющий большую числовую апертуру.

 

Однако для «сухого» объектива, с показателем преломления среды перед его передней линзой n=1, максимальное значение числовой апертуры объектива не может превысить значение около 0,95.

 

Для решения этой проблемы берут иммерсионную жидкость, показатель преломления которой n2 и показатель преломления фронтальной линзы n3 выбраны определённым образом. Исходящие от одной точки объекта OP лучи проходят без преломления через иммерсионную пленку и могут «приниматься» фронтальной линзой объектива.

 

В этом случае числовая апертура увеличивается, а предел разрешения уменьшается в n2 раз.

Дополнительные преимущества

Возникающие на поверхностях покровного стекла и фронтальной линзе объектива паразитные отражения существенно меньше, нежели у «сухих» объективов, а в некоторых случаях паразитные рефлексы могут быть полностью устранены. Это улучшает контраст изображения и позволяет поднять освещённость препарата без вредного влияния на изображение.

Толщина слоя жидкости между объективом и препаратом может меняться, и за счет этого можно в некоторых пределах изменять компенсацию сферической аберрации.