Особенности горения газового топлива

Газообразное топливо

Состав магистрального природного газа зависит от месторождения или состава смеси газов различных месторождений и состоит преимущественно из метана СН4=65–98 % и небольшого количества более тяжелых углеводородов. Негорючими компонентами (балластом) в составе природного газа чаще всего являются азот и углекислый газ. Среднее значение низшей теплоты сгорания природного газа Qн=31–40 мДж/м3. Плотность при нормальных условиях r=0,72–0,85 кг/м3.

Сжиженные технические смеси пропан-бутана должны содержать не менее 93 % пропан-бутановых (С3Н84Н10) фракций. Среднее значение низшей теплоты сгорания, в пересчете на 1 м3 регазифицированной пропан-бутановой смеси при нормальных условиях, Qн=92,2 мДж/м3. Плотность при нормальных условиях r=2,2–2,4 кг/м3.

Особенности горения

Сжигание топлива осуществляется в атмосферном воздухе, состоящем из окислителя – кислорода О2 (21 %) и инертного, не участвующего в горении азота N2 (79 %). Теоретически необходимое для полного сжигания горючих компонентов газа количество воздуха рассчитывается по составу газа и для природного газа различных месторождений составляет Vо=8,5–10 м33, а для сжиженного газа Vо=24–30 м33. Как бы ни было совершенно ГГУ, его работа в режимах, соответствующих подаче на горение теоретически необходимого объема воздуха, сопровождается потерями от химической неполноты горения. Взаимная диффузия топлива и окислителя при образовании газовоздушной смеси затрудняется наличием балластных газов и образующихся продуктов сгорания, что объясняет необходимость работы ГГУ с большими расходами воздуха на горение. Соотношение действительного количества воздуха, поступающего на горение и теоретически необходимого, определяется коэффициентом избытка воздуха: a=Vд/V°.

Воспламенить гомогенную смесь природного газа и воздуха можно только в том случае, если соотношение газ-воздух находится между нижней (смесь «бедная», концентрация газа более 5,3 %, т. е. a1,8) и верхней границей воспламенения (смесь «богатая», концентрация газа менее 14 %, т. е. a>0,65). Результирующее значение коэффициента избытка воздуха для всех типов горелочных устройств a>1 и для атмосферных ГГУ, при работе с номинальной нагрузкой, находится в эксплуатационном диапазоне aэ=1,05–1,25. Значение коэффициента избытка воздуха на работающем теплогенераторе может быть определено на основании результатов газового анализа продуктов сгорания по содержанию в них кислорода О2 (%) или углекислого газа СО2 (%). Для природного и сжиженного газов среднего состава соотношение концентраций О2 и СО2 в продуктах полного сгорания в зависимости от коэффициента избытка воздуха, а также значения теоретической (калориметрической) температуры горения и полного объема продуктов сгорания приведены в табл. 1.

Как следует из приведенных в табл. 1 данных, разбавление продуктов сгорания избыточным воздухом (с ростом a) приводит к снижению теоретической температуры горения топлива и, следовательно, к снижению интенсивности теплообмена в топке теплогенератора, а также к увеличению объема продуктов сгорания и, как следствие, к росту потерь теплоты с уходящими газами (q2). Поэтому вполне оправданным является стремление работать с минимальными значениями коэффициента избытка воздуха. Однако эффективность работы конкретного ГГУ определяется не столько значением эксплуатационного коэффициента избытка воздуха, сколько полнотой сжигания горючих компонентов газа. Продукты неполного сгорания в дымовых газах: оксид углерода (СО), метан (СН4), водород (Н2) – не только загрязняют окружающую среду, но являются также прямыми потерями химической энергии топлива. Именно значение потерь от химической неполноты горения топлива (q3) в первую очередь определяет значение эксплуатационного коэффициента избытка воздуха ГГУ.

Таблица 1 Значения теоретической (калориметрической) температуры горения и полного объема продуктов сгорания
Коэф- фициент избытка воздуха, a Природный газ среднего состава Сжиженный газ среднего состава
СО2, % О2, % Теоретическая температура горения, °С Объем продуктов сгорания, м33 СО2, % О2, % Теоретическая температура горения, °С Объем продуктов сгорания, м33
1,00 11,80 0,00 10,52 14,00 0,00 29,60
1,05 11,20 1,00 11,00 13,50 1,20 30,97
1,10 10,70 1,95 11,48 12,60 2,10 32,34
1,15 10,20 2,80 11,96 12,10 2,85 33,71
1,20 9,80 3,60 12,43 11,50 3,75 35,08
1,25 9,40 4,20 12,91 11,20 4,20 36,45

 

Режимы работы атмосферных ГГУ

Малая кинетической энергия струи природного газа низкого давления существенно ограничивает возможности эжектирования воздуха при смесеобразовании в атмосферных ГГУ, а также ограничивает глубину регулирования при сохранении соотношения газ-воздух в смеси.

При диффузионномсжигании газа процесс смесеобразования совмещен с процессом горения, развивающимся при достижении контакта газа с окислителем. Высокие температуры в топках котлов обуславливают высокие скорости химического реагирования, а время протекания процесса горения будет полностью определяться интенсивностью процесса смесеобразования. Поэтому для получения относительно короткого диффузионного факела используются приемы максимальной интенсификации смесеобразования:

- деление потоков газа и воздуха (уменьшение единичной мощности отдельных горелок в составе блока, образующего ГГУ);

- закручивание смесеобразующих потоков на выходе, у корня факелов ГГУ;

- искусственная турбулизация в зоне смесеобразования и горения и др.

Выгодной особенностью диффузионного горения (без предварительного смесеобразования) является принципиальная невозможность «проскока» пламени внутрь ГГУ. Однако условия стабилизации фронта пламени по «отрыву», из-за малой скорости распространения пламени, и сравнительно большие размеры диффузионного факела существенно ограничивают тепловые напряжения топочного объема и мощность ГГУ в режимах максимальных нагрузок теплогенератора.

При кинетическом сжиганиигаза удается сократить время горения (максимально увеличить скорость распространения пламени), т. к. из времени горения практически исключается самый длительный процесс – смесеобразование. Таким образом, скорость горения будет определяться интенсивностью прогрева смеси и кинетикой химического реагирования. Учитывая значительные объемы воздуха, которые должны эжектироваться газовой струей для реализации кинетического процесса горения, при разработке атмосферных ГГУ с полным предварительным смешением стремятся минимизировать аэродинамические сопротивления узла эжекции и смешения, а также головки горелки. Стабилизация процесса горения в ГГУ полного предварительного смешения осуществляется в диапазонах скоростей выхода газовоздушной смеси из отверстий головки горелки, исключающих «проскок» и «отрыв» фронта пламени. Графически зона стабильной работы атмосферного ГГУ полного предварительного смешения на природном газе иллюстрируется (рис. 1) областью между кривыми «проскока» и «отрыва» пламени для значений a>1.

Рисунок 1. Зона устойчивого горения для атмосферной газовой горелки на природном газе

Скорости «отрыва» и «проскока» пламени зависят от соотношения скорости выхода топливовоздушной смеси и скорости распространения пламени (т. е. от состава газа и коэффициента избытка первичного воздуха a’) и от условий стабилизации горения у корня каждого горящего факела ГГУ. Как следует из рис. 1, зона устойчивого горения ГГУ полного предварительного смешения (a’>1) весьма узкая. Так, при a=1,2 (для приведенной в качестве примера горелки на рис. 1) соотношение скоростей на выходе: wот/wпр = 1,45/0,73=2, т. е. диапазон устойчивого горения, соответствует глубине регулирования мощности горелки от 50 до 100 %.

ЛЕКЦИЯ 12 (раздел 6)