Нелинейные детерминированные модели

Нелинейные детерминированные модели обладают бóльшей точностью и гибкостью. Они могут быть заданы в виде нелинейной функции одной или нескольких переменных или в виде дифференциальных уравнений (обыкновенных или в частных производных). Наиболее распространенными среди нелинейных моделей при описании ДУ и ДЛА являются:

– полиномиальные функции;

– позиномные функции;

– тригонометрические функции;

– экспоненциальные функции;

– обыкновенные дифференциальные уравнения;

– дифференциальные уравнения в частных производных др.

Нелинейные модели могут быть записаны в виде функционала, зависящего от управляющих переменных х и некоторых функций f(x) всех или части этих переменных:
W = W(x,f(x)). При этом функции f(x) могут представлять собой функционалы, зависящие от промежуточных функций f*(x) и т.д. На класс функций f(x), f*(x) не накладывается никаких ограничений, однако предполагается возможность однозначного перехода от вектора управляющих параметров х к общей характеристике модели W.

Область определения модели может быть ограничена с помощью равенств или неравенств:

xi = ci , i = 1,…, m;

f(x) = cj , j = 1,…, l;

xi min £ xi £ xi max , i = 1,…, k;

fj(x) £ cj , j = 1,…, n.

По существу под определение нелинейной модели подпадает любое математическое описание ДУ и ДЛА, не укладывающееся в рамки более простых моделей.

 

Полиномиальные модели

Полиномиальные модели основаны на идее приближенного представления модели конечным числом членов ряда Тейлора:

.

Наиболее простой из моделей этого класса является квадратичная модель:

при ограничениях

Квадратичные модели широко используются для представления экспериментальных данных при идентификации ДЛА и их элементов.

Квадратичные модели используются для аппроксимации отдельных участков поверхности отклика, когда линейное приближение оказывается недостаточным, например, в окрестности экстремума, и лежит в основе нелинейных методов оптимизации. Если квадратичная модель также оказывается недостаточно точной, то используются полиномиальные модели более высоких порядков.

Исследование полиномиальных моделей частично можно осуществить аналитическими методами. Например, аналитически можно определить степень влияния отдельных переменных на характеристики модели.

 

Позиномные модели

Позиномные модели основаны на представлении модели в виде суммы произведений степенных функций:

, (2.14)

где xi – управляющие переменные, aij – произвольные положительные числа, cj ³ 0 – обеспечивает выпуклость модели.

Величины aij, сj рассчитываются на основе статистических данных, отражающих опыт производства соответствующих узлов и систем.

Позиномные модели можно использовать для описания стоимости сложных систем.

К позиномным моделям сводится задача выбора геометрических характеристик ряда технических устройств, в том числе элементов ДЛА, например, электромагнитов, силовых ферм и т.д.

Исследование позиномных моделей сложнее, чем моделей полиномиального типа, и осуществляется в основном численными методами. Однако, при m = 1 и x1 > 0, x2 > 0,…, xk > 0 в формуле (2.4) существует способ приведения позинома к линейному виду.

В этом частном случае модель (2.4) будет выглядеть в следующем виде:

.

Прологарифмируем обе части этого равенства, получим

. (2.15)

Введем обозначения логарифмов переменных W, x1, x2,…,xk и константы с:

Выражение (2.5) примет линейный вид

Y(X1, X2,…, Xk) = C + a1x1 + a2x2 + … +akxk.

Для поиска оптимальных решений на основе позиномных моделей разработан специальный аппарат – так называемое геометрическое программирование.