Корреляционные поля и их использование в предварительном анализе корреляционной связи

При постановке вопроса о корреляционной зависимости между двумя статистическими признаками Х и У проводят эксперимент с параллельной регистрацией их значений.

Пример 7.1.

Определить, зависит ли результат прыжка в длину с разбега (признак Х) от величины конечной скорости разбега (признак У). Для ответа на этот вопрос параллельно с регистрацией результата Х каждого прыжка спортсмена или группы спортсменов регистрируют и величину конечной скорости разбега Y . Пусть они таковы:

Таблица 5

I
xi ( см )
yi ( м/с ) 10,7 10,5 10,1 9,8 10,1 10,5 9,1 9,6

 

Представим таблицу 5 в виде графика в прямоугольной системе координат, где на горизонтальной оси будем откладывать длину прыжка (Х), а на вертикальной — величину конечной скорости разбега в этом прыжке ( Y ). function PlayMyFlash(cmd){ Corel_.TPlay(cmd); }
Будем называть корреляционным полем зону разброса таким образом полученных точек на графике. Визуально анализируя корреляционное поле на рисунке 8, можно заметить, что оно как бы вытянуто вдоль какой-либо прямой линии. Такая картина характерна для так называемой линейной корреляционной взаимосвязи между признаками. При этом можно в общем предположить, что с увеличением конечной скорости разбега увеличивается и длина прыжка, и наоборот. Т.е. между рассматриваемыми признаками наблюдается прямая (положительная) взаимосвязь.

Наряду с этим примером из множества других возможных корреляционных полей можно выделить следующие (рис.5-7):

Рис.5. Рис.6.

Рис. 7.

На рисунке 9 тоже просматривается линейная взаимосвязь, но с увеличением значений одного признака, уменьшаются значения другого, и наоборот, т.е. связь обратная или отрицательная. Можно предположить, что на рисунке 11 точки корреляционного поля разбросаны около какой-то кривой линии. В таком случае говорят, что между признаками существует криволинейная корреляционная связь.

В отношении корреляционного поля, изображенного на рисунке 10, нельзя сказать, что точки располагаются вдоль какой-то прямой или кривой линии, оно имеет сферическую форму. В этом случае говорят, что признаки Х и Y не зависят друг от друга.

Кроме этого по корреляционному полю можно примерно судить о тесноте корреляционной связи, если эта связь существует. Здесь говорят: чем меньше точки разбросаны около воображаемой усредненной линии, тем теснее корреляционная связь между рассматриваемыми признаками.

Визуальный анализ корреляционных полей помогает разобраться в сущности корреляционной взаимосвязи, позволяет высказать предположение о наличии, направленности и тесноте связи. Но точно сказать, имеется связь между признаками или нет, линейная связь или криволинейная, тесная связь (достоверная) или слабая (недостоверная), с помощью этого метода нельзя. Наиболее точным методом выявления и оценки линейной взаимосвязи между признаками является метод определения различных корреляционных показателей по статистическим данным.


3. Коэффициенты корреляции и их свойства

Часто для определения достоверности взаимосвязи между двумя признаками (Х, У) используют непараметрический (ранговый) коэффициент корреляции Спирмена и параметрический коэффициент корреляции Пирсона . Величина этих показателей корреляционной связи определяется по следующим формулам:


(1)


где: dx — ранги статистических данных признака х;

dy — ранги статистических данных признака у.


(2)


где: — статистические данные признака х,

— статистические данные признака у.

Эти коэффициенты обладают такими мощными признаками:

1. На основании коэффициентов корреляции можно судить только о прямолинейной корреляционной взаимосвязи между признаками. О криволинейной связи с их помощью ничего сказать нельзя.

2. Значения коэффициентов корреляции есть безразмерная величина, которая не может быть меньше -1 и больше +1, т.е.

3.

4. Если значения коэффициентов корреляции равны нулю, т.е. = 0 или = 0, то связь между признаками х, у отсутствует.

5. Если значения коэффициентов корреляции отрицательные, т.е. < 0 или < 0, то связь между признаками Х и Y обратная.

6. Если значения коэффициентов корреляции положительные, т.е. > 0 или y> 0 , то связь между признаками Х и Y прямая (положительная).

7. Если коэффициенты корреляции принимают значения +1 или -1, т.е. = ± 1 или = ± 1, то связь между признаками Х и Y линейная (функциональная).

8. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Эта достоверность еще зависит от числа степеней свободы.

 

k = n - 2, (3)


где: n — число коррелируемых пар статистических данных признаков Х и Y.

Чем больше n , тем выше достоверность связи при одном и том же коэффициенте корреляции.

Кроме перечисленных общих свойств у рассматриваемых коэффициентов корреляции имеются и различия. Главное их отличие состоит в том, что коэффициент Пирсона ( может быть использован только в случае нормальности распределения признаков Х и Y , коэффициент Спирмена ( ) может быть использован для признаков с любым видом распределения. Если рассматриваемые признаки имеют нормальное распределение, то целесообразнее определять наличие корреляционной связи с помощью коэффициента Пирсона ( ), т.к. в этом случае он будет иметь меньшую погрешность, чем коэффициент Спирмена ( ).

Пример 7.2.

Определить с помощью рангового коэффициента корреляции Спирмена существует ли взаимосвязь между результатами прыжка в длину с разбега (X) и конечной скоростью разбега (Y) группы спортсменов (данные примера 8.1, табл. 5).

В формуле (1) dx и dy ранги статистических данных, т.е. места вариант в их ранжированной совокупности. Если в совокупности несколько одинаковых данных, то их ранги равны и определяются как среднее значение от мест, занимаемых этими вариантами. Например,

 

 

Данные xi
Ранги dx 4,5 4,5 4,5 4,5 7,5 7,5  

 

      3 + 4 + 5 + 6 7 + 8
     

 

Пользуясь этим правилом, определим ранги данных таблицы 5. Для удобства все запишем в виде таблицы 6.

 

Таблица 6

dx dy dx - dy
9,1 1 - 1 = 0 02 = 0
9,6 2 - 2 = 0 02 = 0
9,8 3 - 3 = 0 02 = 0
10,1 4 - 4 = 0 02 = 0
10,5 6,5 5 - 6,5 = - 1,5 (- 1,5)2 = 2,25
10,5 6,5 6 - 6,5 = - 0,5 (- 0,5)2 = 0,25
10,3 7 - 5 = 2 22 = 4
10,7 8 - 8 = 0 02 = 0
        (dx-dy) = 0

 

В данном случае имеем 8 пар значений, т.е. 8 коррелируемых пар. Значит n = 8. Подставив полученное в формулу (1), будем иметь:

Вывод: а) т.к. значение коэффициента корреляции положительное (0,92 > 0), то между признаками Х и У наблюдается прямая связь, т.е. с увеличением скорости разбега (признак У) увеличивается длина прыжка (признак Х), и наоборот — с уменьшением скорости разбега уменьшается длина прыжка. Достоверность коэффициента корреляции Спирмена определяется по таблице критических значений рангового коэффициента корреляции .

б) т.к. полученное значение коэффициента корреляции = 0,9 больше табличного значений = 0,88, соответствующего уровню b = 99%, то уверенность в правильности вывода (а) больше 99%. Такая достоверность позволяет распространить вывод (а) на всю генеральную совокупность, т.е. на всех прыгунов в длину.

Если не производится предварительной проверки рассматриваемых совокупностей на нормальность распределения, то , в случае недостоверности коэффициента корреляции Пирсона, следует проверить наличие связи еще и по коэффициенту Спирмена.

Пример 7.3.

Ранговым коэффициентом корреляции можно выявлять взаимосвязи между переменными, имеющими любые статистические распределения. Но если эти переменные имеют нормальное распределение (Гаусса), то более точно связь можно установить с помощью нормированного (Бравэ-Пирсона) коэффициента корреляции.

Предположим, что в нашем примере и — отвечают закону нормального распределения, и проверим наличие связи между результатами теста X и Y c помощью расчета нормированного коэффициента корреляции.

Из формулы (1) видно, что для вычисления необходимо найти средние значения признаков X, Y и отклонения каждого статистического данного от его среднего . Зная эти значения, можно найти суммы по которым не сложно вычислить

По данным таблице 5 заполним таблицу 7:

Таблица 7

962 = 9216 10,7 0,6 0,62 = 0,36 96 · 0,6 = 57,6
262 = 676 10,5 0,4 0,42 = 0,16 26 · 0,4 = 10,4
10,3 0,2 0,04 5,4
- 4 9,8 - 0,3 0,09 1,2
10,1 0,00 1,0
10,5 0,4 0,16 3,2
- 92 9,1 - 1,0 1,00 9,2
- 64 9,6 - 0,5 0,25 32,0
  = 23262   = 2,06 = 201


Подставив сумму столбца 7 в числитель формулы (1), а суммы столбцов 3 и 6 в знаменатель, получим:

Вывод:

а) т.к. значение коэффициента корреляции положительное (0.92>0), то между Х и Y наблюдается прямая связь, т.е. с увеличением скорости разбега (признак Y) увеличивается длина прыжка (признак Х) и наоборот — с уменьшением скорости разбега уменьшается длина прыжка. Очень важно знать уверенность в правильности полученного вывода.

Для этого по таблице критических значений нормированного коэффициента корреляции определим достоверность найденного коэффициента корреляции. Здесь число степеней свободы согласно формуле (3) будет:

k = n - 2 = 8 - 2 = 6.

По таблице критических значений нормированного коэффициента корреляции для k = 6 величина = 0,71 соответствует уверенности в 95% ( b = 100% - a ), а = 0,83 соответствует уверенности в 99%;

б) т.к. полученное значение коэффициента корреляции = 0,94 больше табличного значения = 0,83, соответствующего уровню = 99%, то уверенность в правильности вывода (а) больше 99%. В области спорта такая уверенность достаточна, поэтому полученный вывод (а) можно распространять на всю генеральную совокупность (на всех прыгунов в длину).