Интерференция от клина. Полосы равной толщины 2 страница

Билет 6

1.3

1. Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается параллельно самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе. Поэтому кинематическое рассмотрение поступательного движения абсолютно твердого тела сводится к изучению движения любой его точки. В самом общем случае поступательно движущееся твердое тело обладает тремя степенями свободы.

2. Движение абсолютно твердого тела, при котором две его точки А и B остаются неподвижными, называется вращением (вращательным движением) вокруг неподвижной прямой АВ, называемой осью вращения. При вращении твердого тела вокруг неподвижной оси все его точки описывают окружности, центры которых лежат на оси вращения, а плоскости - перпендикулярны к ней. Тело, вращающееся вокруг неподвижной оси, обладает одной степенью свободы: его положение полностью определяется заданием угла f поворота из некоторого начального положения.

1. Кинетической характеристикой характеризующей быстроту и направление вращения твердого тела, является угловая скорость.

Угловая скорость – векторная величина, определяемая первой производной угла поворота по времени .

Кинетической характеристикой, определяющей быстроту изменения угловой скорости тела, является угловое ускорение .

Связь линейной v и угловой скоростей.

Из формулы для , т.к. •R = S в пределе получаем:

, отсюда


 

2.8

1. Магнитное взаимодействие — это взаимодействие токов.

Напряжённость магнитного поля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M:

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sin. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Закон Био-Савара-Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

Тогда магнитная индукция внутри соленоида

 

3.9

3. Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград. Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера.

Дифракция света на одной щели

Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности: условие минимума интенсивности

условие максимума интенсивности

Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Дифракция света на дифракционной решетке

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: b – ширина щели решетки; а – расстояние между щелями; d=a+b – постоянная дифракционной решетки.

Условие максимума для дифракционной решетки будет иметь вид: где m = ± 1, ± 2, ± 3, …

В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными.

 

Билет 7

1.11

1. Механической энергией тела в физике называют сумму кинетической и потенциальной энергий этого тела (E=T+П). Закон сохранения механической энергии в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем (Е=Т+П).

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

Авн = Е = Е – Е0, где Е и Е0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения Fтр и элементарным перемещением r тела составляет радиан, работа силы трения отрицательна и равна

Aтр = –Fтрs12, где s12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

 

2.8

2. Магнитное взаимодействие — это взаимодействие токов.

Напряжённость магнитного поля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M:

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sin. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Закон Био-Савара-Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

Тогда магнитная индукция внутри соленоида

 

3.2

уравнение плоской волны

 

Волновая поверхность — геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности — волновой фронт.


Плоские и сферические волны

ОПРЕДЕЛЕНИЕ

Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей (рис.1, а).

Пример плоской волны – волна, возникающая в цилиндре с газом, при совершении колебаний поршнем.

ОПРЕДЕЛЕНИЕ

Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер (рис.1, б).

Примерами сферических волн служат волны, генерируемые точечным источником в однородной среде.

Луч — линия, нормальная к волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская — параллельные прямые).

 

 

Билет 8

 

1.9

 

. Работа силы – физическая величина, равная произведению модуля вектора силы на модуль вектора перемещения и на косинус угла между этими векторами: A=F*S*cos. Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным размещением тела в пространстве, называют консервативными, или потенциальными. К ним принадлежат: силы притяжения, силы упругости, электростатические силы взаимодействия между заряженными телами.

Силы, что не принадлежат к консервативным, называют неконсервативными:

- силы трения, которые возникают при скольжении одного тела по поверхности другого

- силы сопротивления, которых испытывает тело, двигаясь в жидкой или газообразной среде.

Эти силы зависят не только от формы тел, но и от их скорости. Они направлены всегда против направления скорости, потому работа сил трения всегда отрицательна.

Теперь вычислим работу этой же силы на замкнутом пути 1-2-3-4-1. понятно, что её можно представить суммой работ на участках 1-2-3 и 3-4-1

.

При этом .

Отсюда можно заключить, что работа консервативной силы по любому замкнутому пути равна нулю

.

Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.

 

3.6

2. Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Амплитуда результирующих колебаний в любой точке среды не зависит от времени. Разность хода волн равна целому числу длин волн ( иначе четному числу длин полуволн) , где .В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде. Разность хода волн равна нечетному числу длин полуволн , где . Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.

Амплитуда колебаний данной точки равна нулю.

Волны когерентны, если:

1. их частоты одинаковы,

2. разность их начальных фаз постоянна и

3. угол между направлениями поляризации волн остается постоянным .

Когерентность волны означает, что в различных пространственных точках волны осцилляции происходят синхронно, то есть разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно — ситуация, когда разность фаз между двумя точками не постоянна, а меняется со временем. Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (то есть нескоррелированных) излучателей.

1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

s=nd.

4. Величина называется оптической разностью хода двух лучей. Разность хода связана с разностью фаз :

.

5. При разность фаз ; удлинению (или укорочению) оптической длины пути одной из волн относительно другой на соответствует запаздывание (или опережение) первой волны на . При суперпозиции таких волн их амплитуды вычитаются друг от друга, и в случае равенства амплитуд обеих волн амплитуда результирующей волны равна нулю.

Амплитуда результирующего колебания зависит от величины, называемой разностью хода волн.

Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.

Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.

В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны (рис. 3.7.1). Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рис. 3.7.2).

Рисунок 3.7.1. Наблюдение колец Ньютона. Интерференция возникает при сложении волн, отразившихся от двух сторон воздушной прослойки. «Лучи» 1 и 2 – направления распространения волн; h – толщина воздушного зазора

 

Рисунок 3.7.2. Кольца Ньютона в зеленом и красном свете

4.1

Тепловое излучение — электромагнитное излучение, возникающее за счёт внутренней энергии тела[1]. Имеет сплошной спектр, расположение и интенсивность максимума которого зависят от температуры тела. При остывании последний смещается в длинноволновую часть спектра.

Энергетические характеристики теплового излучения:

1) Энергетическая совместимость R – количество электромагнитной энергии, излучаемое телом с единицы площади поверхности в единицу времени во всем диапазоне длин волн.

[R]= Дж/(с×м2)=Вт/м2

2) Спектральная плотность энергетической совместимости r– количество электромагнитной энергии, излучаемое телом с единицы площади поверхности в единицу аремени (в интервале длин волнот до +d)

[r=Дж/(с×м3)]

3) Поток излучения Ф – количество энергии, переносимой электромагнитным излучением через какую-либо единицу площади поверхности за единицу времени.

[Ф]=Дж/с=Вт

4) Поглощательная способность тела (коэф. поглощения) – отношение поглощаемого телом излучения к падающему на него потоку.

 

 

Закон Кирхгофа:

Отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и является универсальной функцией длины волны и температуры T

r/a=(,T)

Чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать

В случае абсолютно черного тела испускательная способность будет максимальной.

Закон Стефана-Больцмана:

Энергетическая светимость абсолютно черного тела прямо пропорциональна четвертой степени температуры тела.

R=T4

=5,67*10-8Вт/(м24)

Закон смещения Вина:

Длина волны , на котрую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температура T.

=b/T, b=2,898*10-3м*К

Постулат Планка:

Процессы излучения происходят не непрерывно, как это было принято в классической физике, а конечными порциями – квантами.

W=h, h=6,626*10-34 Дж*с

Квант – минимальная порция энергии, излучаемой или поглощаемой телом.

Распределение энергии в спектре абсолютно черного тела: r(,T)=22*h/(c2*(eh/kT-1))

 

Билет 9

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды -рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

 

 

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

3.2. Плоская волна — волна, фронт которой имеет форму плоскости.

Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в и заканчивается в , чего, очевидно, быть не может.

Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Волновое уравнение для функции записывается в виде:

где

  • - оператор Лапласа;
  • — искомая функция;
  • — радиус вектора искомой точки;
  • — скорость волны;
  • — время.

Волновая поверхность — геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности — волновой фронт.

А) Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей.

Б) Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер.

Луч — линия, нормальной и волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская — параллельные прямые).

Понятием луч в физике обычно пользуются только в геометрической оптике и акустике, так как при проявлении эффектов, не изучаемых в данных направлениях, смысл понятия луч теряется.

 

Билет 10

1.10.

Кинетическая энергия тела; ее связь с работой силы.

Кинетическая энергия - энергия движущегося тела. По определению кинетическая энергия покоящегося в данной системе отсчета тела обращается в ноль.

 

Изменение кинетической энергии тела (материальной точки) за некоторый промежуток времени равно работе, совершенной силой, действующей на тело, за этот же промежуток времени

 

Кинетическая энергия поступательного и вращательного движения твердого тела.

 

Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки Vi=VC

или

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

 

Вращательное движение. Если тело вращается вокруг какой-нибудь оси Оz , то скорость любой его точки где - расстояние точки от оси вращения, а - угло­вая скорость тела. Подставляя это значение и вынося общие множители за скобку, получим:

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Таким образом, окончательно найдем:

2.10.

Электромагнитная индукция.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Опыты Фарадея. Объяснение электромагнитной индукции.

Если подносить постоянный магнит к катушке или наоборот (рис.3.1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток , но лучше всего этот эффект проявляется, если две катушки соединить сердечником