Расчет колонны на устойчивость относительно

материальной оси x-x

Рекомендуют предварительно задаться гибкостью: для средних по длине колонн 5 – 7 м с расчетной нагрузкой до 2500 кН принимают гибкость l = 90 – 50; с нагрузкой 2500 – 3000 кН – l = 50 – 30, для более высоких колонн необходимо задаваться гибкостью несколько большей.

Предельная гибкость колонн где – коэффициент, учитывающий неполное использование несущей способности колонны, принимаемый не менее 0,5. При полном использовании несущей способности колонны lu = 120.

Задаемся гибкостью l = 50.

Условная гибкость

По табл. 3.12 определяем тип кривой в соответствии с типом принятого сечения (тип b). Согласно табл. 3.11 условной гибкости = 1,7соответствует коэффициент устойчивости при центральном сжатии j = 0,868.

Находим требуемую площадь поперечного сечения по формуле

.

Требуемая площадь одной ветви

Требуемый радиус инерции относительно оси x-x

По требуемым площади Ab и радиусу инерции ix выбираем из сортамента (ГОСТ 8240-93) два швеллера №36, имеющих следующие характеристики сечения:

Ab = 53,4 см2; A = 2Ab = 53,4 × 2 = 106,8 см2; Ix = 10820 см4; I1= 513 см4;

ix = 14,2 см; i1= 3,1 см; толщину стенки d = 7,5 мм; ширину полки bb = 110 мм; привязку к центру тяжести zо = 2,68 см; линейную плотность (массу 1 м пог.) 41,9 кг/м.

Если максимальный швеллерный профиль [40 не обеспечивает требуемую несущую способность сквозной колонны, переходят на проектирование

ветвей колонны из прокатных двутавров, принимаемых по ГОСТ 8239–89.

Определяем:

– гибкость колонны

;

– условную гибкость

– для кривой устойчивости b коэффициент устойчивости = 0,833. Проверяем общую устойчивость колонны относительно материальной

оси x-x:

Общая устойчивость колонны обеспечена.

Недонапряжение в колонне

Если устойчивость колонны не обеспечена или получен большой запас, то изменяют номер профиля и вновь делают проверку.

4.3.2. Расчет колонны на устойчивость относительно свободной оси y-y

Расчет на устойчивость центрально-сжатой колонны сквозного сечения, ветви которой соединены планками или решетками, относительно свободной оси (перпендикулярной плоскости планок или решеток) производят по приведенной гибкости lef :

– для колонны с планками

при

и при

– для колонны с треугольной решеткой

где – теоретическая гибкость стержня колонны относительно оси y-y;

– гибкость ветви колонны относительно оси 1-1;

– момент инерции сечения одной планки относительно собственной оси z-z;

I1 – момент инерции ветви относительно оси 1-1 (по сортаменту);

lb – расстояние между планками по центрам тяжести;

lob – расстояние между планками в свету;

bo – расстояние между центрами тяжести ветвей колонн;

– отношение погонных жесткостей ветви и планки;

A – площадь сечения всего стержня колонны;

Ad1 – суммарная площадь поперечных сечений раскосов решеток, лежащих в плоскостях, перпендикулярных оси у-у;

1 = 10a3/(b2l) – коэффициент, зависящий от угла наклона раскоса к ветви (a, b, l – размеры, определяемые по рис. 4.6).

 

Рис. 4.6. Схема треугольной решетки

Подбор сечения колонн относительно оси y-y производится из условия ее равноустойчивости (равенства гибкости x относительно x-x и приведенной гибкости ef относительно оси y-y),которая достигается за счет изменения расстояния между ветвями bo.