Проверка и обеспечение местной устойчивости стенки балки.

Под действием нормальных и касательных напряжений стенка балки может потерять местную устойчивость, т.е. может произойти ее местное выпучивание. Это произойдет в том случае, если действующие в балке отдельные виды напряжений или их совместное воздействие превысят критические напряжения потери устойчивости. Устойчивость стенки обычно обеспечивают не за счет увеличения ее толщины, что привело бы к повышенному перерасходу материала из-за большого размера стенки, а за счет укрепления ее ребрами жесткости.

Стенку балки следует укреплять поперечными ребрами жесткости, если значение условной гибкости превышает 3,2 при отсутствии местной нагрузки на пояс балки и 2,2 – при наличии местной нагрузки.

Определяем условную гибкость стенки:

следовательно, поперечные ребра жесткости необходимы (рис. 3.14). Расстояние между основными поперечными ребрами a не должно превышать 2hw при lw > 3,2 и 2,5hw при `lw £ 3,2. Для балок, рассчитываемых в упругой стадии, допускается превышать указанные выше расстояния между ребрами до значения 3hw при условии передачи нагрузки через сплошной жесткий настил или при значении гибкости сжатого пояса балки b = lef /bf, не превышающем ее предельного значения ub (в рассматриваемом примере это условие соблюдается: в середине пролета балки b = 6,67< ub = 15,64 и в измененном сечении b = 12,56< ub = 14,3), и при обязательном обеспечении местной устойчивости элементов балки.

Рис. 3.14. Схема балки, укрепленной поперечными ребрами жесткости

Расстояние между ребрами назначаем , что увязывается с шагом балок настила При шаге а = 3 м поперечное ребро жесткости попадает на монтажный стык в середине пролета балки, поэтому первое и последующие за ним ребра смещаем к опоре на расстояние а/2 = 1,5м.

Ширина выступающей части парного ребра должна быть не менее

br = hw/30 + 40 = 1500 / 30 + 40 = 90 мм.

для одностороннего – br = hw/24 + 50 = 1500 / 24 + 50 = 112,5 мм.

Толщина ребра

Принимаем ребро жесткости по ГОСТ 103–76* (табл. 3.7) из двух стальных полос 90´7 мм. Ребра жесткости привариваются к стенке непрерывными угловыми швами минимальной толщины. Торцы ребер должны иметь скосы с размерами не менее 40´40 мм для снижения концентрации сварочных напряжений в зоне пересечения сварных швов и пропуска поясных швов балки.

Поперечное ребро жесткости, расположенное в месте приложения сосредоточенной нагрузки Fb = 334,08 кН к верхнему поясу балки проверяют расчетом на устойчивость: двустороннее ребро – как центрально-сжатую стойку, одностороннее – как стойку, сжатую с эксцентриситетом, равным расстоянию от срединной плоскости стенки до центра тяжести расчетного сечения стойки. При этом в расчетное сечение стойки включают сечение ребра жесткости и устойчивые полосы стенки шириной

c = 0,65tw = 0,65 · 1,2 = 22,85 см

с каждой стороны ребра, а расчетную длину принимают равной высоте стенки hw = 1500 мм (рис. 3.15).

Рис. 3.15. Расчетное сечение условной стойки

Расчетная площадь стойки при двустороннем ребре

As = (2br+ tw)tr+ 2ctw = (2 · 9 + 1,2) 0,7 + 2 22,85 1,2) = 68,28 см2.

Момент инерции сечения стойки

Iz = tr3/12 + 2ctw3/12 = 0,7 (2 9 +1,2)3 / 12 + 2 22,85 1,23 / 12 = 412,88 см4.

Радиус инерции

iz = = = 2,46 см.

Гибкость стойки

z = lef /iz = 150 / 2,46 = 60,98.

Условная гибкость

Производим проверку устойчивости стойки:

где = 0,813 – коэффициент устойчивости при центральном сжатии, принимаемый по табл. 3.11 в зависимости от условной гибкости z для типа кривой устойчивости b; тип кривой устойчивости зависит от формы сечений и толщины проката (табл. 3.12), при условной гибкости z 0,4 коэффициент принимается равным единице.

Условие выполняется.

Таблица 3.11