Контроль работоспособности насосов

Корпус.Наиболее вероятные дефекты корпуса центробежных насосов - коррозионный износ отдельных мест внутри корпуса; изъяны отливки корпуса, выявившиеся в процессе эксплуатации насоса (свищи и т. д.); износ посадочных мест; недостаточная чистота, забоины, риски на плоскости разъема. После устранения дефектов корпус проверяют методом керосиновой пробы.

Основные дефекты защитных гильз – кольцевые задиры и износ по наружному диаметру; износ посадочных отверстий под вал; наплывы частиц фольги сальников по наружному диаметру; износ резьбы.

Рабочие колеса подвержены наиболее интенсивному износу в результате действия механического трения, эрозионного и коррозионного действия перекачиваемой среды, кавитационного разрушения и ряда других факторов. Незначительное кавитационное разрушение подлежит восстановлению. При сильном кавитационном повреждении рабочие колеса (сквозные отверстия, полное или частичное разрушение лопастей), как правило, заменяют запасными.

 

Таблица . Межремонтный пробег и структура ремонтных циклов насосов

Тип насоса Ресурс между ремонтами, ч Структура ремонтного цикла
текущими средними капиталь-ными
Центробежные, перекачива-ющие неагрессивные нефте-продукты при температуре до 200 оС 3960-4680 11800 -14010 35640 - 42120 6Т, 2С, К
Центробежные, перекачива-ющие неагрессивные нефте-продукты с механическими примесями (глины) 2160-2520 4320-5040 12960 -15120 3Т, 2С, К
Центробежные, перекачива-ющие неагрессивные нефте-продукты при температуре выше 200 оС 2880-3240 8640-9720 34560 -38800 8Т, 3С, К
Центробежные, перекачива-ющие агрессивные нефте-продукты при температуре до 200 оС 1980 - 2340 3960 - 4680 15840 -18720 4Т, 3С, К
Центробежные, перекачива-ющие агрессивные нефте-продукты при температуре выше 200 оС 1440 -1620 2880 - 3240 8640 - 9710 3Т, 2С, К
Центробежные, перекачива-ющие кислоты и щелочи, не очищенные от среды, сжиженные газы, фенольную воду 1440 - 1620 4320 - 4860 8640 - 9720 4Т, С, К
Конденсатные 5400 - 5940 10800 - 11880 32400 - 35640 3Т, 2С, К
Вихревые и роторные 3960 - 4500 - 7920 - 9000 Т, К
Вакуумные 1980 - 2340 7920 - 9360 15840 - 18720 6Т, С, К
Электроприводные поршнев-вые,перекачивающие неагрес-сивные нефтепродукты при температуре до 200оС 1440 - 1800 5760 - 7200 17280 - 21600 9Т, 2С, К
То же, при температуре выше 200 оС 1440 - 1620 5760 – 6480 17280 - 19440 9Т, 2С, К
Электроприводные поршнев-вые, перекачивающие агрес-сивные нефтепродукты при температуре до 200оС 1440- -1620 4320 - 4860 17280 - 19440 8Т, 3С, К
То же, при температуре выше 200 оС 720 - 900 2160 - 2700 12960 - 16200 12Т, 5С, К

 

При малом зазоре между рабочим колесом и лопатками на входных участках последних могут появиться места разрушения вследствие так называемой «щелевой кавитации». В случае плохого прилегания торцевой поверхности отвода к секции возможны утечки, приводящие к эрозионному размыву лопаток. Такие дефекты, как правило, исправляют заваркой с последующей шабровкой и приваркой плоскости прилегания по краске.

Кавитационному разрушению наиболее сильно подвержены входные кромки лопастей рабочих колес. При невозможности исправления заваркой входные кромки могут быть подрезаны на станке на 5 – 10 мм, в зависимости от размеров колеса.

Таблица . Параметры ремонтного цикла химических насосов

 

Тип и марка насосов Ресурс между ремонтами, ч
капитальными текущими
Центробежные: типа Х (ХО) , N = 17 кВт типа Х (ХО) , N = 55 - 75 кВт
Центробежные герметичные типа ХГВ, N = 40 кВт ЦНГ, N =2,8 -16 кВт
Центробежные типа 3Х – 9П, N = 10 - 18 кВт 7Х – 9Н, N = 55 кВт
Центробежные герметичные типа ХГВ, N = 40 кВт ЦНГ, N =2,8 -16 кВт
Центробежные типа 3Х – 9П, N = 10 - 18 кВт 7Х – 9Н, N = 55 кВт
Трехскальчатый типа Т – 25/340
Скальчатый типа ХТ8/52А
Плунжерные типа ХТР -4/100Т, ХТР-8/110, ХТР-20/50

Вал (ротор). Наиболее вероятными дефектами валов являются: износ шеек вала; трещины любого размера в любом месте; износ резьбы и шпоночных пазов; искривление вала. Овальность и конусность шеек вала (для подшипников качения) не должны превышать полонины допуска на обработку, указанного в рабочем чертеже. Зазор между втулкой вала и средней опорой, зависящей от диаметра вала, не должен превышать 0,2 – 0,4 мм для насосов нормального ряда. Боковые зазоры между вкладышем и валом должны быть вдвое меньше верхнего зазора. Осевой зазор между валом и крышкой корпуса подшипника допускается в пределах 1 – 3 мм на диаметр.

Допустимые зазоры между валом насоса и вкладышем подшипников скольжения ( в мм) приведены ниже

Диаметр вала 18 - 30 30 - 50 50 - 80 80 - 100 120 - 180 180 - 240
Верхний зазор 0,06 – 0,08 0,08 – 0,12 0,10 – 0,18 0,16 -0,24 0,24 – 0,36 0,36 – 0,50
Боковой зазор 0,03 – 0,04 0,04 – 0,06 0,06 – 0,09 0,08 – 0,12 0,12 – 0,18 0,18 – 0,25

Если биение превышает допустимые значения, вал подлежит правке. Износ шеек вала не должен превышать 2% от номинального диаметра. Изгиб вала проверяют в центрах. Эллипсность или конусность шеек вала под подшипники скольжения должны быть не более 0,004 мм.

Таблица . Значения биений деталей ротора центробежных наосов.

Детали Биение в насосах нормального ряда, мм Биение в насосах типа КВН, мм
номинальное максимальное номинальное максимальное
По окружности
Полумуфта 0,03 0,05 0,03 0,06
Шейка вала под подшипники 0,015 0,02 0,02 0,04
Защитные гильзы вала 0,02 0,03 0,06 0,07
Уплотняющие кольца колес 0,03 0,05 0,06 0,08
Втулки промежуточного подшипника 0,03 0.05 - -
Маслоотбойное кольцо - - 0,05 0,07
Ступица разгрузочного диска - - 0,06 0,08
Упорный диск - - 0,02 0,03
По торцу
Полумуфта 0.02 0,04 0,02 0,04
Рабочее колесо 0,10 0,20 0,10 0,20
Разгрузочный диск - - 0,02 0,04
Упорный диск - - 0,02 0,04

Подшипники.На поверхности вкладыша подшипника скольжения глубина трещин и износа рабочей поверхности не должны превышать 1 мм. Максимальный зазор между валом и верхним вкладышем долен быть не более 0,2 мм для вала диаметром 50 – 80 мм и не более 0,33 мм - вала диаметром 80 – 120 мм. Подшипник скольжения необходимо перезалить, если раковины и выкрошившиеся куски обнаруживаются более чем на четверти всей поверхности подшипника. Рабочая поверхность упорного диска должна быть гладкой, без царапин и забоин и не должа иметь следов касания о колодки. При износе гребня диска на 2 – 3 мм или втулки диска на 2 – 2,5 мм по диаметру диск подлежит замене.

Зазор между передними рабочими колодками и гребнем упорного диска должен равняться нулю, между задними рабочими колодками и гребнем - 0,7 мм. Толщина новых колодок должна быть одинакова, а толщина баббитовой заливки - не более 1,5 мм.

На подшипниках качения не допускается следующие дефекты: трещины или выкрашивание металла на кольцах и телах качения, цвета побежалости в любом месте подшипника; выбоины и отпечатки (лунки) на беговых дорожках колец; шелушение металла, чешуйчатые отслоения; коррозионные раковины, забоины и вмятины на поверхностях качения, видимые неворужонным глазом; глубокие поперечные риски и забоины на беговых дорожках колец и на телах качения; надломы, сквозные трещины на сепараторе, отсутствие илиослабление заклепок на нем; забоины и вмятины на сепараторе, препятствующие плавному вращению подшипников; заметная на глаз и на ощупь ступенчатая выработка рабочей поверхности колец. При вращении подшипника должен быть слышан глухой шипящий звук; резкий металлический или дребезжащий звук не допускается.

Подшипники внутренним диаметром до 50 мм заменяют, если радиальный зазор превышает 0,1 мм; для подшипников диаметром 50 – 100 мм зазор не должен превышать 0,2 мм, диаметром более 100 мм – 0,3 мм.

Порядок контроля подшипников качения должен быть следующим: осмотр, проверка на шум и легкость вращения, измерение радиального зазора и колец.

Радиальный зазор можно измерять на приборе КИ-1223 или КП-0512. При отсутствии этих приборов можно пользоваться штангенциркулем; при этом определяют разность результатов двух диаметрально противоположных измерений, получаемых при прижатом к одной стороне внутреннем кольце.

Для всех насосов после снятия радиально-упорных подшипников обязательна проверка осевого разбега ротора в корпусе.

Таблица Рекомендуемые значения осевых зазоров в радиально-упорных и упорных подшипниках

Диаметр вала, мм Серия подшипника Осевые зазоры в подшипниках, мм
Радиально-упорных Двойных упорных
роликовых шариковых
До 30 Легкая Легкая и средняя 0,03 – 0,10 0,04-0,11 0,02-0,06 - 0,03-0,08 -
Средняя и тяжелая 0,04-0,11 0,03-0,09 0,05-0,11
Свыше 30 Легкая. 0,04-0,11 0,03-0,09 0,05-0,10
До 50 Легкая и средняя 0,05-0,13 - -
Свыше 50 легкая 0,05-0,13 0,04-0,10 0,06- 0,12
До 80 Легкая и средняя 0,06-0,15 - -
Средняя и тяжелая 0,06-0,15 0,05-0,12 0,07-0,14
Свыше 80 Легкая. 0,06-0,15 0,05-0,12 0,06-0,15
До 120 Легкая и средняя 0,07-0,18 - -
Средняя и тяжелая 0,07-0,18 0,06-0,15 0,10-0,18

 

 

Поршневые насосы

Поршневые насосы являются основным видом объемных насосов. Отличительные особенности этих насосов: постоянное разобщение напорной и всасывающей областей насоса специальными клапанами; независимость развиваемого наосом напора от величины подачи (напор определяется прочностью деталей насоса и мощностью двигателя); подача жидкости отдельными порциями, зависящими от размеров рабочей части насоса и скорости движения поршня. К поршневым насосам относят также и плунжерные насосы, отличающиеся от поршневых насосов конструкцией вытеснителя и характером уплотнения. Поршневые насосы классифицируются по нескольким основным признакам:

1. по характеру движения ведущего звена: прямодействующие, в которых ведущее звено совершает возвратно-поступательные движения (паровые прямодействующие); а также вальные, в которых ведущее звено совершает вращательное движение (кривошипные, кулачковые);

2. По числу циклов нагнетания и всасывания за один двойной ход: одностороннего и двухстороннего действия.

3. По количеству поршней или плунжеров: однопоршневые, двухпоршневые, трехпоршневые и многопоршневые.

4. По виду вытеснителей: поршневые, плунжерные и диафрагменные.

5. По способу приведения в действие: с механическим приводом паровым приводом и гидроприводные.

Принципиальная схема насосной установки поршневого насоса приведена на рис. 9.1, а схема поршневого насоса одинарного действия на рис.9.2.

Поршневой насос (рис.9.2) состоит из двух частей - гидравлической и приводной. Гидравлическая часть, предназначенная для перекачки жидкости, состоит из цилиндра 1, в котором возвратно-поступательно движется поршень 2 со штоком 11, и клапанов 3 и 4, помещенных в специальные клапанные коробки. Всасывающий клапан 3 отделяет внутреннюю полость насоса от всасывающего трубопровода 5, а нагнетательный клапан 4 - от нагнетательного трубопровода 6.

Рис 9.1. Схема насосной установки: Нв – высота всасывания; Нн – высота нагнетания  
Рис.9.2. Схема поршневого насоса одинарного действия
.

 

Приводная часть поршневого насоса служит для передачи энергии от двигателя к поршню. Она состоит из кривошипно-шатунного механизма, включающего кривошип 7, шатун 8, ползун 9 и направляющее 10 для ползуна. Кривошип 7 жестко посажен на вал двигателя или редуктора и вращается вместе с ним. Кривошип шарнирно соединен с шатуном 8, который также шарнирно связан с ползуном 9. При вращении кривошипа шатун 8 перемешает ползун 9 в направляющих 10 взад и вперед. Благодаря этому совершает возвратно-поступательное движение и поршень 2, связанный штоком 11 с ползуном. Движение поршня оказывается неравномерным: его скорость непрерывно изменяется от нуля в крайних положениях до максимального значения в среднем положении.

Поршневой насос, показанный на рис.9.2, подает жидкость один раз за один полный оборот кривошипа. Подобные насосы называют насосами одностороннего действия.

Кроме насосов одностороннего действия, в промышленности используются поршневые насосы многократного действия, в которых за один полный оборот кривошипа жидкость подается в напорный трубопровод два и большее число раз. В соответствии с этим они называются насосами двустороннего, трехстороннего и т. д. действия.

В возвратно-поступательном насосе двустороннего действия (рис. 9.3) четыре клапана (по два с каждой стороны): два всасывающих 1 и и два нагнетательных 2 и 2¢ . При движении поршня вправо (по чертежу) в левой части цилиндра этого насоса происходит всасывание, в правой - нагнетание. При обратном движении поршня, наоборот, справа происходит всасывание, слева - нагнетание.

Рис.9.4. Схема дифференциального плунжерного насоса

Рис.9.3. Схема поршневого насоса двустороннего действия

 

Возвратно-поступательные насосы, у которых рабочие органы выполнены в виде плунжеров, называют плунжерными насосами.Они используются в основном для перекачивания жидкостей под большим давлением, так как плунжер легче уплотнить, чем поршень.

Один из типов плунжерных насосов - дифференциальный плунжерный насос показан на рис. 9.4. Этот насос имеет два клапана (всасывающий 1 и нагнетательный 2) и две камеры (рабочую 4 и дополнительную 5). Камеры соединены между собой напорным коленом 3. В дифференциальном насосе всасывание производится один раз за оборот коленчатого вала, а нагнетание - дважды. Благодаря этому достигается более равномерная подача жидкости в нагнетательный трубопровод, чем в насосе однократного действия.

Для уменьшения пульсаций при движении жидкостей, на нагнетательной линии поршневых насосах устанавливают воздушные колпаки. Воздушные колпаки обычно конструктивно связаны с самим насосов. При увеличении подачи жидкости в единицу времени находящийся в воздушном колпаке воздух сжимается, а при уменьшении подачи – расширяется. Таким образом, в колпаке создается упругая воздушная подушка, выравнивающая подачу жидкости в нагнетательный трубопровод.

Кулачковые насосы могут быть одноцилиндровыми и многоцилиндровыми. В одноцилиндровых насосах поршень приводится в движение кулачком, а возвращается в исходное положение с помощью пружины. Ось вращения кулачка смещена относительно его геометрической оси на величину эксцентриситета. При вращении кулачка поршень совершает в цилиндре возвратно-поступательное движение. При этом через всасывающий клапан происходит всасывание жидкости , а через нагнетательный клапан – нагнетание жидкости. Подача в насосах данного типа такая же неоднородная, как в поршневых насосах простого действия с шатунно-кривошипным механизмом. Для выравнивания подачи применяются многопоршневые насосы с числом цилиндров n = 3 - 11 в одном ряду и со смещением фаз их рабочих циклов на угол ф= 360о/n.

Кулачковые поршневые насосы способны создать высокие давления. Они применяются в различных гидроприводах, для нагнетания жидкости в гидропрессах, в системе подачи смазки в многоступенчатых компрессорах и т. д.

Поршневые насосы для перекачки нефтепродуктов на НПЗ и НХЗ Поршневые и плунжерные насосы на нефтеперерабатывающих заводах используют для перекачивания небольших количеств жидкости при больших давлениях, для перекачивания горячих жидких нефтепродуктов (мазута, гудрона и др.), а также холодных нефтепродуктов с температурой менее 100оС. Применяют поршневые паровые прямодействующие насосы двойного действия, а также поршневые насосы с приводом от электродвигателя через редуктор. Прямодействующие паровые насосы горизонтального типа состоят из трех основных частей: гидравлической, паровой и средника, соединяющего обе части, на котором смонтирована стойка парораспределительного механизма. Гидравлический и паровой поршни расположены на одном штоке. Подача таких насосов регулируется открытием паровпускного клапана.

Прямодействующие поршневые насосы обладают рядом преимуществ по сравнению с поршневыми насосами, имеющими привод: постоянная готовность к пуску, надежность в работе, простота обслуживания, легкость регулирования подачи, путем изменения подачи пара в паровые цилиндры. Недостаток прямодействующих насосов – низкий к.п.д.

Подачу поршневых наосов регулируют изменением длины хода поршня (плунжера), изменением скорости вращения приводного вала. Их недостаток - громоздкость, сложность привода, неравномерность подачи жидкости и малая подача. Они более дороги и сложнее в эксплуатации, так как имеют отдельные двигатель и редуктор. Преимущество – более экономичны, возможность создания высокого давления в жидкости, величина которого ограничивается механической прочностью деталей насоса.

Таблица 3.19 Технические характеристики поршневых насосов

Тип насоса, агрегата Подача, м3 Напор, м ст. жидкости Число типо-размеров Материал проточной части Мощность двигателя, кВт
Поршневые приводные химические насосы с нерегулируемой подачей
Т 3 - 20 150 - 1200 12Х18Н10Т 2,0 - 20
Тг 5,0 30Х13, 40Х13 20,0
ХТ 1,6 – 7,5 200 - 630 Ст.35 2,8 - 20
Поршневые приводные химические насосы с регулировкой подачи
ХТр 0,1 - 30 200 - 2200 12Х21Н5Т 4,5 - 75
ПР 0 - 50 60,0 2Х13, ЭИ629 2,8
ХП 0 – 5,0 14Х17Н2,30Х13 4,5
РКК 0 – 1,5 ЭИ943 2,8
РКС 0 – 1,5 ЭИ461 2,8
РКХ 0 – 1,5 ЭИ461 2,8
Паровые насосы
ХПНП 14 - 55 20 – 40 Ст.4.0,СЧ21-40 2,8
Дозировочные насосы
3ХГ 0 – 10 * керамика 0,12
3ХН 0 – 63 * 12Х!8Н10Т 0,4
НД 10 – 2500* 100 - 4000 12Х!8Н10Т 0,27 – 3,0
Поршневые нефтяные регулируемые и дозировочные насосы
Р 0 - 10 250 - 640 12Х!8Н10Т 3, - 13,0
Д 0 – 1,6 250 - 1600 10х17Н13М2Т 1,5 – 3,0
* подача в л/ч

 

Поршневые насосы позволяют создавать высокие давления и могут успешно перекачивать жидкости при высоких температурах. Однако они практически непригодны для загрязненных жидкостей. Такие жидкости успешно перекачиваются лопастными насосами, обладающими к тому же высокой производительностью. Технические характеристики насосов приведены в табл. 3.18 - 3.20.