Геометрическая вероятность

Чтобы преодолеть недостаток классического опре­деления вероятности, состоящий в том, что оно непри­менимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности.

При геометрическом подходе к определению вероятности в качестве про­странства Q элементарных событий рассматривается произвольное множество конечной меры[1] на прямой, плоскости или в пространстве.

Событиями называются измеримые всевозможные подмножества множества Q.

В конкретных задачах испытание интерпретируется как случайный выбор точки в некоторой области Q, а событие А — как попадание выбранной точки в некоторую под­область А области Q. При этом требуется, чтобы все точки области Q имели оди­наковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т. Д.

Геометрическая вероятность - вероятность попа­дания точки в область (отрезок, часть плоскости или пространства).

Приведенные определения являются частными случаями общего определения геометрической вероятности. Обозначим меру (длину, площадь, объем) области через m(е). При этом вероятность попадания точки, брошенной наудачу в область g - часть области G, равна отношению мер областей g и G, соответственно равнее m(g) и m(G).

Формула геометрической вероятности в этом случае имеет вид: P=m(g) : m(G)

В случае классического определения вероят­ность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно).

В случае геометри­ческого определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

Геометрическая вероятность на отрезке.

Пусть отрезок m составляет часть отрезка L. На отре­зок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок m пропорциональна длине этого отрезка и не зависит от его расположения относи­тельно отрезка L. В этих предположениях вероятность попадания точки на отрезок m определяется равенством

Р =( Длина m ) : /Длина L).

Задание 3-2. Вычислить геометрические вероятности на отрезке

1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине от­резка и не зависит от его расположения на числовой оси,

Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В(х) попа­дет на отрезок CD длины L/3. Искомая вероятность

P=(L/3) : L= l/3.

2. [3, №79]. Расстояние от пункта А до В автобус проходит за 2 мин, а пешеход — за 15 мин. Интервал движения автобусов 25 мин. Вы подходите в случайный момент времени к пункту A и отправляе­тесь в В пешком. Найдите вероятность того, что в пути вас догонит очередной автобус.

 

Геометрическая вероятность на плоскости.

Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошен­ная точка может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством

Р = (Площадь q) : (Площадь Q)

Задание 3-3. Вычислить геометрические вероятности на плоскости

1.На плоскости начерчены две концентрические окруж­ности, радиусы которых 5 и 10 см соответственно. Найти вероят­ность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.

Решение. Площадь кольца (фигуры g) Sq=(102-52)=75 . Площадь большого круга (фигуры G) SQ=102 =100 . Искомая вероятность равна P=(75 )^( 100 )=0,75

2[3, № 82].На паркет, составленный из правильных треугольников со стороной а, случайно брошена монета радиуса г. Найдите вероят­ность того, что монета не заденет границы ни одного из треугольников.