Уравнения с одной переменной

Возьмем два выражения с переменной: 4х и 5х + 2. Соединив их знаком равенства, получим предложение 4х = 5х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание. Например, при х = -2 предложение 4х = 5х + 2 обращается в истинное числовое равенство 4 (-2) = 5 (-2) + 2, а при х = 1 - в ложное 4 1 =5 1+2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(x) и g(x) - два выражения с переменной х и областью определения X. Тогда высказывательная форма видa f(x) = g(x) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенства, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2, -1}.

Уравнение (3х+1) 2 = 6х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1) 2 = 6х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Определение. Два уравнения f1(x) = g1(x) и f 2(x) = g2(x) называются равносильными, если множества их корней совпадают.

Например, уравнения х2- 9 = 0 и (2х + 6)(х- 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1) 2 = 6х + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Выясним теперь, какие преобразования позволяют получать равносильные уравнения.

Теорема 1. Пусть уравнение f (х) =g(x) задано на множестве и h(x)- выражение, определенное на том же множестве. Тогда уравнения f(x)=g(x) (1) и f(x) +h(x) = g(x) +h(x) (2) равносильны.

Доказательство. Обозначим через Т1- множество решений уравнения (1), а через Т2- множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем уравнения (1).

Пусть число а- корень уравнения (1). Тогда а Т1 и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(a) =g(a), а выражение h(x) обращает в числовое выражение h(a), имеющие смысл на множестве X. Прибавим к обеим частям истинного равенства f(a) =g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 Т2.

Пусть теперь а - корень уравнения (2). Тогда а Т2, и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) =g(a) + h(a). Прибавим к обеим частям этого равенства числовое выражение –h(a). Получим истинное числовое равенство f (а) = g(a), которое свидетельствует о том, что число а - корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. Т2 Т1.

Так как Т1 Т2 и Т2 Т1, то по определению равных множеств T12, а значит, уравнения (1) и (2) равносильны.

Доказанную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f (х) =g(x) задано на множестве X и h(x)- выражение, которое определено на том же множестве и не обращается в нуль ни при каких значениях х из множества X. Тогда уравнение f(x) =g(x) и f(x) h(x)= g(x) h(x) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то лее число, отличное от нуля, то получим уравнение, равносильное данному.

Решим уравнение , х R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

Преобразования Обоснование преобразований
1. Приведем выражения, стоящие в левой и правой частях уравнения к общему знаменателю: 2. Отбросим общий знаменатель:6-2х = х.     3. Выражение -2х переносим в правую часть уравнения с противоположным знаком: 6 = х + 2х.     4. Приводим подобные члены в правой части уравнения: 6 = 3х.   5. Разделим обе части уравнения на 3: х = 2. Выполнили тождественное преобразование выражения в левой части уравнения.   Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.   Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.   Выполнили тождественное преобразование выражения.   Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному.  

 

Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.

Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.

Рассмотрим, например, уравнение х(х - 1) = 2х, х R. Разделим обе части на х, получим уравнение х - 1 = 2, откуда х = 3, т.е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0 (0 - 1) = 2 0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х, т.е. умножили на выражение , но при х - 0 оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.

Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое его решение. Перенесем выражение 2х из правой части в левую: х(х -1)-2х = 0. Вынесем в левой части уравнения за скобки л: и приведем подобные члены: х(х - 3) = 0. Произведение двух множителей равно нулю в том и только том случае, когда хотя бы один из них равен нулю, поэтому х = 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.

В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х 9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х 9 = 24 3, или х 9 =72.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х =72:9, или х = 8. следовательно, корнем данного уравнения является число 8.