Математическая обработка ряда независимых многократных неравноточных измерений.

Дополнительные характеристики разброса случайной величины.

От характеристик положения – математического ожидания, медианы, моды – перейдем к характеристикам разброса случайной величины Х: дисперсии , среднему квадратическому отклонению и коэффициенту вариации v. Определение и свойства дисперсии для дискретных случайных величин рассмотрены в предыдущей главе. Для непрерывных случайных величин

.

Среднее квадратическое отклонение – это неотрицательное значение квадратного корня из дисперсии:

.

Коэффициент вариации – это отношение среднего квадратического отклонения к математическому ожиданию:

.

Коэффициент вариации применяется при M(X)>0. Он измеряет разброс в относительных единицах, в то время как среднее квадратическое отклонение – в абсолютных.

Пример 6. Для равномерно распределенной случайной величины Х найдем дисперсию, среднеквадратическое отклонение и коэффициент вариации. Дисперсия равна:

Замена переменной дает возможность записать:

где c = (b – a)/2. Следовательно, среднее квадратическое отклонение равно а коэффициент вариации таков:

По каждой случайной величине Х определяют еще три величины – центрированную Y, нормированную V и приведенную U. Центрированная случайная величина Y – это разность между данной случайной величиной Х и ее математическим ожиданием М(Х), т.е. Y = Х – М(Х).Математическое ожидание центрированной случайной величины Y равно 0, а дисперсия – дисперсии данной случайной величины: М(Y) = 0, D(Y) = D(X). Функция распределения FY(x) центрированной случайной величины Y связана с функцией распределения F(x) исходной случайной величины Xсоотношением:

FY(x) =F(x + M(X)).

Математическая обработка ряда независимых многократных неравноточных измерений.

Веса измерений. Неравноточными называют измерения, выполненные приборами различной точности, разным числом приемов, в различных условиях.

При неравноточных измерениях точность каждого результата измерений характеризуется своей среднеквадратической погрешностью. Наряду со средней квадратической погрешностью при обработке неравноточных измерений пользуются относительной характеристикой точности – весом измерения. Вес i-го измерения вычисляют по формуле

(5.9)

где с – произвольная постоянная, назначаемая вычислителем, mi – средняя квадратическая погрешность i-го измерения.

Так, имея ряд результатов измерений l1, l2, ..., ln , со средними квадратическими погрешностями m1 , m2 , ..., mn , определяют их веса:

p1 = c / m12, p2 = c / m22 , ..., pn = c / mn2.

Часто постоянную с для удобства дальнейших вычислений назначают так, чтобы веса piоказались целыми числами.

Рассмотрим смысл произвольной постоянной с. Предположим, что в результате фиксирования значения с вес j-го измерения стал равен 1, то есть pj = c / mj2 = 1. Отсюда находим c = mj2. Следовательно, постоянная с есть квадрат средней квадратической погрешности m2 такого измерения, вес которого принят за единицу (с = m2).

Теперь (5.9) можем записать так

. (5.10)

Кратко m называют средней квадратической погрешностью единицы веса.

Вес арифметической средины. Рассмотрим вес арифметической средины равноточных измерений. Примем в формуле (5.8) за единицу вес одного измерения, то есть m = m, и запишем .

Тогда согласно (5.10) вес Р арифметической средины L будет равен

P = = n. (5.11)

Вывод. Если за единицу веса принят вес одного измерения, то согласно (5.11) вес арифметической средины равен числу измерений.

Следствие. Если результат l измерения имеет вес р, то можем считать, что l является средним арифметическим из р измерений с весом 1.

 

Экзаменационный билет № 20 – Хаитбой

  1. Определение закона распределения на основе опытных данных.
  2. Порядок обработки двойных равноточных измерений ряда однородных величин.
  3. Задача.

Разработка методов регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений, составляет предмет специальной науки — математической статистики.

Все задачи математической статистики касаются вопросов обработки наблюдений над массовыми случайными явлениями, но в зависимости от характера решаемого практического вопроса и от объема имеющегося экспериментального материала эти задачи могут принимать ту или иную форму.

Охарактеризуем вкратце некоторые типичные задачи математической статистики, часто встречаемые на практике.

1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
Мы уже указывали, что закономерности, наблюдаемые в массо­вых случайных явлениях, проявляются тем точнее и отчетливее, чем больше объем статистического материала. При обработке обширных по'своему объему статистических данных часто возникает вопрос об" определении законов распределения тех или иных случайных величин. Теоретически при достаточном количестве опытов свойственные этим случайным величинам закономерности будут осуществляться сколь угодно точно. На практике нам всегда приходится иметь дело с огра­ниченным количеством экспериментальных данных; в связи с этим результаты наших наблюдений и их обработки всегда содержат боль­ший или меньший элемент случайности. Возникает вопрос о том, какие черты наблюдаемого явления относятся к постоянным, устойчивым и действительно присущи ему, а какие являются случайными и про­являются в данной серии наблюдений только за счет ограниченного объема экспериментальных данных. Естественно, к методике обра­ботки экспериментальных данных следует предъявить такие требо­вания, чтобы она, по возможности, сохраняла типичные, характерные черты наблюдаемого явления и отбрасывала все несущественное, второстепенное, связанное с недостаточным объемом опытного мате­риала. В связи с этим возникает характерная для математической статистики задача сглаживания или выравнивания стати­стических данных, представления их в наиболее компактном виде с помощью простых аналитических зависимостей.

2. Задача проверки правдоподобия гипотез.

Эта задача тесно связана с предыдущей; при решении такого рода задач мы обычно не располагаем настолько обширным статистическим материалом, чтобы выявляющиеся в нем статистические закономерности были в достаточной мере свободны от элементов случайности. Статистический материал может с большим или меньшим правдоподобием подтверждать или не подтверждать справедливость той или иной гипотезы.

  1. Порядок обработки двойных равноточных измерений ряда однородных величин.

1) Если известны средние квадратические погрешности каких-либо величин, то можно по ним определить среднюю квадратическую погрешность любой функции этих величин.

Задачи по оценке точности таких функций решают, используя готовую формулу, которая выводится на основании положений теории вероятностей.

Для оценки точности функции общего вида:

u=f(x1, х2,…,хn),

где x1, х2,…,хn-измеренные величины

используют формулу

–дисперсия функции, - дисперсия измеренных величин.

 

На практике дисперсии заменяют квадратами средних квадратических погрешностей

 

Пример: Стороны прямоугольника измерены с точностью ma и mb. Найти среднюю квадратическую погрешность измерения площади прямоугольника.

ma = 0,02м; mb = 0,02м; а = 200,24м; b = 200,24м.

 

 

 

м