Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Волны

 

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной. Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Рисунок 2.6.1. Распространение поперечного волнового импульса по натянутому резиновому жгуту.

 

Рисунок 2.6.2. Распространение продольного волнового импульса по упругому стержню.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами. В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Рисунок 2.6.3. Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики обладают массой m, а пружинки – жесткостью k. С помощью такой простой модели можно описать распространение продольных и поперечных волн в твердом теле. В продольных волнах шарики испытывают смещения вдоль цепочки, а пружинки растягиваются или сжимаются. Такая деформация называется деформацией растяжения или сжатия(см. §1.12). В жидкостях или газах деформация такого рода сопровождается уплотнением или разрежением.

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью .

Смещение y(x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:

 

где – так называемое волновое число, = 2f – круговая частота.

На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + t. За время t волна переместилась вдоль оси OX на расстояние t. Волны, все точки которых перемещаются с одной и той же скоростью, принято называть бегущими (в отличие от стоячих волн, см. далее).

Рисунок 2.6.4. «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + t.

Длиной волны называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны , волна пробегает за период T, следовательно, = T, где – скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки A на рис. 2.6.4) выражение t – kx не изменяется по величине. С течением времени t изменяется и координата x этой точки. Через промежуток времени t точка A переместится по оси OX на некоторое расстояние x = t. Следовательно:

t – kx = (t + t) – k(x + x) = const или t = kx.

 

Отсюда следует:

 

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны . Волновое число является пространственным аналогом круговой частоты

Обратим внимание на то, что уравнение

y(x, t) = A cos (t + kx)

 

описывает синусоидальную волну, распространяющуюся в направлении, противоположном направлению оси OX, со скоростью

В бегущей синусоидальной волне каждая частица среды совершает гармонические колебания с некоторой частотой . Поэтому, как и в случае простого колебательного процесса, средняя потенциальная энергия, запасенная в некотором объеме среды, равна средней кинетической энергии в том же объеме.