Бесконечно большие функции и их связь с бесконечно малыми.

Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

 

Записывается .

 

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Графически приведенные выше случаи можно проиллюстрировать следующим образом:

 

 
 

 


a x a x a x

 

 

Определение. Функция называется бесконечно большойпри х®а, где а – чосли или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥.

 

Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

 

Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

 

 

2.4. Сравнение бесконечно малых функций.

 

Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю.

Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x.

Определение. Если , то функция a называется бесконечно малой более высокого порядка, чем функция b.

Определение. Если , то a и b называются бесконечно малыми одного порядка.

Определение. Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.

 

Пример. Сравним бесконечно малые при х®0 функции f(x) = x10 и f(x) = x.

т.е. функция f(x) = x10 – бесконечно малая более высокого порядка, чем f(x) = x.

 

Определение. Бесконечно малая функция a называется бесконечно малой порядка kотносительно бесконечно малой функции b, если предел конечен и отличен от нуля.

 

Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение не имеет предела, то функции несравнимы.

 

Пример. Если , то при х®0 , т.е. функция a - бесконечно малая порядка 2 относительно функции b.

 

Пример. Если , то при х®0 не существует, т.е. функция a и b несравнимы.

 

 

25. Некоторые замечательные пределы.

Замечательный предел. , где P(x) = a0xn + a1xn-1 +…+an,

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

 

Итого:

 

Первый замечательный предел.

 

Второй замечательный предел.

 

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 

 

Пример. Найти предел.

 

Пример. Найти предел.

 

Пример. Найти предел.

 

 

Пример. Найти предел .

 

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

 

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

 

Пример. Найти предел.

 

домножим числитель и знаменатель дроби на сопряженное выражение: =

= .