Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Разница критических полуразмеров активной зоны, получаемая за счёт применения отражателя называется эффективной добавкой и обозначается dэ.

Если диаметр активной зоны Dаз является её полным поперечным размером, то радиус активной зоны Rаз является её поперечным полуразмером.

Поэтому на основании данного определения величина эффективной добавки:

dэ = R' - Rаз (9.2.1)

Здесь R' и Rаз, см - критические радиусы активной зоны без отражателя (в вакууме) и при применении отражателя соответственно.

Или через вертикальные критические размеры - высоты критической активной зоны без отражателя (Н') и с отражателем (Наз):

dэ = Н'/2 - Наз/2 (9.2.2)

Таким образом, найдя величину dэ, можно ответить на вопрос о выигрыше в компактности активной зоны, получаемом за счёт применения отражателя.

 

9.2.2. Зависимость величины dэ от толщины отражателя. Отражатели в ядерных реакторах конструируются, как правило, из того же материала, который служит в качестве основного замедлителя в их активных зонах.

До сих пор речь шла о гипотетическом отражателе бесконечной толщины. Но, разумеется, никому не придёт в голову оснащать активную зону реактора отражателем, скажем, двухметровой толщины ради сокращения её размеров на 5 -10 см. Здравомыслящий человек постарается вначале выяснить, как зависит dэ от толщины отражателя, а затем уже станет думать, стоит ли овчинка выделки.

Особенно важен ответ на вопрос об эффективной толщине отражателя для транспортных реакторов, где выигрыш в размере активной зоны на 20 см оборачивается уменьшением веса всей установки на десятки тонн.

То, что эффективность действия отражателя (которая оценивается величиной dэ) зависит от толщины отражателя (По), очевидно. В самом деле, если активная зона лишена отражателя (По = 0), то dэ = 0; если же активная зона окружена отражателем бесконечной толщины, то нужно ожидать, что при отражателе такой толщины значение эффективной добавки будет иметь наибольшую величину (dэmax); при промежуточных значениях По должна существовать какая-то зависимость эффективной добавки от толщины отражателя из данного материала - dэ = f о).

Предположим, имеются две критические активные зоны одинакового состава - без отражателя и с отражателем конечной толщины По.

В обоих случаях для среды активной зоны, а во втором случае - и для среды отражателя, можно записать волновое уравнение Гельмгольца, для которого по конкретным (критическим) размерам и диффузионным характеристикам сред можно составить граничные условия, затем решить эти уравнения, найти в обоих случаях величины геометрического параметра активных зон и критические размеры их без отражателя и с отражателем. Разница критических полуразмеров первой и второй активных зон и даст величину эффективной добавки dэо1) при конкретной толщине отражателя По1.

С некоторыми допущениями эта задача решается не только в численном, но и в общем аналитическом виде, давая возможность получить следующее выражение:

(9.2.3)

где: Strаз и Stro, см-1 - величины транспортных макросечений сред активной зоны и отражателя соответственно;

Lo, см - длина диффузии в отражателе.

Прежде всего отметим, что величина эффективной добавки пропорциональна величине гиперболического тангенса от относительной (т.е. выраженной в длинах диффузии Lo) толщины отражателя.

Напомним, что собой представляет функция гиперболического тангенса. Самое простое её выражение - через экспоненциальные функции того же аргумента:

(9.2.4)

Наглядное представление об этой функции даёт её график:

 

1.0

thx

 

 

0.5

 

 

0 1 2 х

Рис.9.4. График функции гиперболического тангенса thx.

 

Как видим, гиперболический тангенс - функция монотонная и возрастающая; с ростом х она асимптотически устремляется к своему предельному значению - единице. Но заметим, что практически (с менее чем 4%-ной погрешностью) она приближается к своему пределу уже при х = 2 (th2 » 0.964).

Теперь о зависимости dэо). Понятно, что если построить график dэ по оси абсцисс в единицах длины диффузии в отражателе (то есть в относительных единицах По/Lо), то этот график, по существу, повторит кривую гиперболического тангенса в ином масштабе по оси dэ. Асимптотическим пределом величины dэ при По/Lо ® ¥ будет значение:

(9.2.5)

 
 


dэо)

 

0 Lo 2Lо По

 

Рис.9.5.Зависимость эффективной добавки от толщины отражателя.

 

Вид этого графика свидетельствует о том, что величина эффективной добавки на 96.4% достигает своего предела уже при толщине отражателя:

По » 2Lо.

Возникает практический вопрос: стоит ли увеличивать толщину отражателя более этого значения, зная при этом, что уменьшение критических размеров активной зоны на 1 см достанется ценой увеличения массы самого отражателя приблизительно на 650 кг и массы корпуса ВВЭР - на 1300 кг? – Наверное, не стоит.

Эффективной толщиной отражателя из заданного материала называется его толщина, при которой отражатель по своим свойствам практичес- ки идентичен бесконечно толстому отражателю из этого материала.

Найденная величина:

Пэф » 2Lo (9.2.6)

и есть эффективная толщина отражателя в диффузионном приближении.

В диффузионно-возрастном приближении эффективная толщина отражателя считается равной полутора длинам миграции нейтронов в активной зоне:

(9.2.7)

Расчёты по обеим формулам дают приблизительно одинаковые результаты. Считая, что у разогретого ВВЭР длина диффузии в водном отражателе Lо » 5.5 см, можно получить представление об эффективной толщине отражателя в реальных ВВЭР, равной приблизительно 10 ¸ 11 см. Такие же расчёты для реактора с графитовым отражателем дают значение эффективной толщины отражателя приблизительно 0.94 м (в реакторе РБМК-1000 фактическая толщина отражателя – 1 м).

9.2.3. Физические основы конструкции отражателей в реальных ЭЯР. В соответствии с упомянутым правилом, основным материалом отражателя выбирается тот же материал, что служит в реакторе основным замедлителем.

Поэтому в уран-графитовом реакторе РБМК-1000 отражатель выполнен из графита, а в реакторе ВВЭР-1000 основной материал отражателя - вода.

Однако в обоих случаях дело обстоит немного сложнее. В ВВЭР, например, отражатель не чисто водяной, а слоистый, водно-стальной: кольцевые слои воды вокруг активной зоны чередуются с кольцевыми слоями нержавеющей стали. Нержавеющая сталь 08Х18Н10Т, применяемая как основной материал для внутриреакторных конструкций, имеет довольно неплохие замедляющие свойства:

- транспортное макросечение Str = 0.861 см-1 (у воды Str » 2 см-1);

- стандартная длина диффузии L = 1.62 см (у воды L = 2.72 );

- замедляющая способность xSs = 0.018 -1 (у воды xSs = 1.35 -1).

Недостаток этой стали как материала для отражателя - её большое макросечение поглощения (Sa » 0.24 -1), из-за чего эффективность водно-стального отражателя несколько снижается по сравнению с чисто водным.

Применение стальных слоев в экранной сборке ВВЭР - дань другой необходимости. Из активной зоны работающего ВВЭР идёт не только поток утечки нейтронов, но и мощное g-излучение, для которого дециметровый слой воды не является достаточной преградой; попадая на корпус реактора, поток g-квантов высоких энергий вызывает радиационный наклёп в его стали, отчего она теряет свои пластические свойства, охрупчивается. Поэтому постановка стальных экранов между активной зоной и корпусом реактора является вынужденной мерой, цель которой - снижение на два порядка величины потока гамма-излучения на корпус реактора, и повышение надежности и долговечности его работы.

Для водно-стальных отражателей эффективной толщины величина эффективной добавки с приличной точностью может вычисляться по эмпирической формуле:

dэ » 3.2 + 0.1(Lаз2 + tаз) (9.2.8)

Водно-стальную компоновку имеют и верхний и нижний торцевые отражатели в ВВЭР, с той лишь разницей, что в них нет явно выраженного чередования горизонтальных слоев воды и стали.

В реакторе РБМК-1000 и боковой, и торцевые отражатели в силу необходимости также имеют не чисто графитовую структуру: через нижний отражатель проходят подводящие теплоноситель к технологическим каналам трубы, в верхнем отражателе проходят отводящие трубы, а графит бокового отражателя пронизывают от низа до верха вертикальные трубы охлаждения самого отражателя.