Окислювальне фосфорилювання

Біологічне окислення

Вивчення процесів окислення було започатковано M.В. Ломоносовим та А. Лавуазьє на основі дослідження продуктів згорання. А. Лавуазьє, співставляючи процеси горіння з процесами дихання в живих організмах, звернув увагу на подібність між ними.

При диханні, як і при згоранні, відбувається поглинання кисню і утворення CO2 і H2O. Енергетичний ефект окислення органічних сполук в організмі та згорання їх також виявились тотожними. Так, при окисленні глюкози до кінцевих продуктів і при згоранні її в колориметрі виділяється однакова кількість енергії 2881 кДж/моль. В зв’язку з цим А. Лавуазье висловив припущення, що сполуки в організмі окислюються в результаті їх повільного згорання. Не зрозумілим було ще те, чому „горіння” різних сполук в організмі відбувається при низькій температурі, без полум'я і за наявності води.

Перші спроби з'ясувати особливості та механізм окислення сполук в організмі (біологічного окислення) зробив Ф. Шенбайн, який висловив припущення, що біологічне окислення – це каталітичний процес, необхідною умовою перебігу якого є активація кисню.

На початку XX cт. O.H. Бах та K. Енглер одночасно і незалежно один від одного запропонували гіпотезу, згідно з якою біологічне окислення проходить за рахунок активування кисню і першим етапом даного процесу є утворення пероксидних сполук. Активування кисню здійснюється за рахунок енергії сполук, здатних до самоокислення, та ферментів оксидаз. Такими сполуками є каротини, терпени, полієнові вищі жирні кислоти, в молекулах яких є кратні подвійні зв'язки, внаслідок чого вони легко взаємодіють з молекулярним киснем, утворюючи пероксидні сполуки, які розщеплюються за участю ферментів пероксидаз і утворюють активний кисень. Останній окислює молекули інших органічних сполук, які з молекулярним киснем не реагують.

Оскільки окислення проходить через утворення пероксидних сполук, то теорія O.M. Баха дістала назву пероксидної теорії окислення.

Значний внесок у розуміння процесів біологічного окислення зробив російський біохімік В.І. Палладін. Вивчаючи окислення речовин у рослинах, він встановив, що воно може відбуватися і при відсутності кисню, якщо в реакційному середовищі є речовини, які здатні приєднувати водень. Такими речовинами виявились пігменти – хромогени. Приєднуючи водень від субстратів, які окислюються, вони відновлюються і стають безбарвними. Потім – віддають водень, тобто окислюються, знову набувають забарвлення, перетворюючись на хінони, причому, перетворення проходить за участю кисню повітря.

Слід зазначити, що В.І. Палладін надавав великого значення кисню як акцептора водню і цим самим показав важливу роль кисню в процесах біологічного окислення. Дослідження В.І. Палладіна були підтверджені працями Віланда. Він висловив думку, що дегідрування субстратів є основним процесом, який лежить в основі біологічного окислення, і що кисень взаємодіє вже з активованими атомами водню. Отже, була створена теорія окислення речовин шляхом їх дегідрування, яка дістала назву теорії Палладіна-Віланда.

Основою в підтвердженні даної теорії було відкриття і вивчення цілого ряду дегідрогеназ – ферментів, які каталізують відщеплення атомів водню від різних субстратів. Було доведено, що процеси окислення субстратів – це цілий ланцюг послідовних реакцій, які починаються з дегідрування субстратів і закінчуються перенесенням електронів на кисень та взаємодією останнього з протонами водню з утворенням води. Оскільки при такому окисленні постійно має місце поглинання кисню, то його ще називають тканинним диханням.

Отже, на основі вищенаведених теорій і досліджень створено сучасні уявлення про механізм біологічного окислення, в основі якого лежить пероксидна теорія Баха і теорія Палладіна-Віланда про дегідрування субстратів.

Суть біологічного окислення. Біологічне окислення, яке проходить в організмах людини і тварин, є досить складним процесом. У ньому беруть участь десятки і сотні різних ферментів, внаслідок чого потенціальна енергія, яка міститься в молекулах органічних речовин, вивільняється і використовується в найрізноманітніших процесах життєдіяльності організму.

Процес біологічного окислення проходить поетапно. У ньому беруть участь ферментні системи, які містять у вигляді: небілкової частини НАД+, НАДФ+; ФМН, ФАД, убіхінони і залізопорфіринові комплекси.

На першому етапі біологічного окислення здійснюється дегідрування субстратів – продуктів розщеплення білків, жирів і вуглеводів. Цей процес відбувається за участю ферментів дегідрогеназ (оксидоредуктаз), які містять коферменти НАД+ і НАДФ+. Вони є майже універсальними акцепторами водню для багатьох субстратів – спиртів, альдегідів, дикарбонових і кетокислот, амінів тощо. Віднімаючи від субстратів атоми водню (електрони і протони), вони самі відновлюються, а субстрати при цьому окислюються.

Прикладом дегідрогеназ може бути лактатдегідрогеназа, яка каталізує реакцію дегідрування молочної кислоти.

Далі, на наступному етапі, акцептором атомів водню є група флавінових ферментів, які у вигляді небілкової частини містять ФМН. Вони здійснюють перенесення атомів водню від відновлених НАД або НАДФ.

Наступним етапом є перенесення електронів і протонів від відновлених форм ФМН на убіхінони (коензим Q).

На наступному етапі з коензиму Q протони атомів водню переходять у навколишнє середовище, а електрони поступають на цитохромну систему. Цитохромна система складається з ряду оксидоредуктаз, небілковою частиною яких є залізопорфірини, близькі за своєю будовою до гему. Відомо понад 20 різних цитохромів. Вони позначаються латинськими буквами – а, в, с, d і т.д. В цитохромну систему входять цитохроми і фермент – цитохромоксидаза (аа3). Характерною особливістю цієї системи ферментів є те, що вони переносять електрони з відновленого коензиму Q на кисень, а останній, сполучаючись з іонізованими атомами водню, утворює воду.

Отже, на завершальному етапі дихання здійснюються два процеси – приєднання до кисню електронів і перетворення його на негативно заряджений іон (іонізація), а потім приєднання до іонізованого кисню протонів з утворенням молекули води. Молекулярний кисень O2 приєднує до себе 4 електрони і 4 протони, а оскільки через систему цитохромів переноситься лише 2 електрони, використовується ? O2 (див. нижче).

У процесі перенесення електронів через систему дихального ланцюга проходить поступове вивільнення акумульованої в них енергії і до кисню вони переносяться вже енергетично бідними, тому утворення води в організмі не супроводжується вибухом, як у випадку утворення гримучого газу.

Отже, в ланцюгу окисно-відновних процесів створюється своєрідний електронний каскад. Послідовність розміщення основних компонентів дихального ланцюга визначається співвідношенням швидкості окислення і відновлення окремих компонентів системи, а також величиною редокс-потенціалів, що виникають між сусідніми компонентами. Перенесення електронів здійснюється завжди від меншого потенціалу до більшого. Для більшості органічних субстратів нормальні редокс-потенціали окисно-відновних систем дорівнюють – 0,6 В.

Окисно-відновна рівновага, окисно-відновний потенціал. Зміна вільної енергії, яка характеризує реакції окислення і відновлення, пропорційна здатності реактантів віддавати або приєднувати електрони. Відповідно, зміну вільної енергії окисно-відновного процесу можна характеризувати не тільки величиною DG, але і величиною окисно-відновного потенціалу системи (Е0). За звичай окисно-відновний потенціал системи (Е0) порівнюють з потенціалом водневого електрону, приймаючи останній за 0,00 В при рН = 0. Однак, для біологічних систем правильніше використовувати окисно-відновний потенціал при рН = 7 (Е0'); при такому рН потенціал водневого електрону дорівнює – 0,42 В. Окисно-відновні потенціали деяких систем, які представляють особливий інтерес для біохімії ссавців, наведені в таблиці 1. Використовуючи цю таблицю, можна передбачити, в якому напрямку піде потік електронів при спряженні однієї окисно-відновної системи з іншою.

Ферменти і коферменти, які приймають участь в окисно-відновних процесах. Ферменти, які каталізують окисно-відновні процеси, називаються оксидоредуктазами. Їх ділять на 5 груп.

 

Таблиця 1

Стандартні потенціали деяких окисно-відновних систем

Система Е’0, вольт
Кисень / вода + 0,82
Цитохром a: Fe3+ / Fe2+ + 0,29
Цитохром с: Fe3+ / Fe2+ + 0,22
Убіхінон: окислений / відновлений + 0,10
Цитохром b: Fe3+ / Fe2- + 0,08
Фумарат / сукцинат + 0,03
Флавопротеїн («жовтий фермент»): окислений / відновлений – 0,12
Оксалоацетат / малат – 0,17
Піруват / лактат – 0,19
Ацетоацетат / b-гідроксибутират – 0,27
Ліпоат: окислений / відновлений – 0,29
НАД+ / НАДН – 0,32
Н+ / Н2 – 0,42
Сукцинат / a-кетоглутарат – 0,67

 

1) Оксидази. Істинні оксидази каталізують видалення водню із субстрату, використовують як акцептор тільки кисень. Вони обов’язково містять мідь, продуктом реакції є вода (виключення складають реакції, які каталізуються уриказою і монооксидазою, в результаті яких утворюється Н2О2 ):

Цитохромоксидаза – гемопротеїн, широко розповсюджений в рослинних і тваринних тканинах. Вона служить кінцевим компонентом ланцюга дихальних переносників, локалізованих в мітохондріях, і каталізує реакцію, в результаті якої електрони, вивільняються із молекул субстрату при їх окисленні дегідрогеназами, переносяться на кінцевий акцептор – кисень. Даний фермент отруюється оксидом вуглецю, ціанідом сірководнем. Інколи цитохромоксидазу називають цитохромом аа3. Спочатку припускали, що цитохром а і цитохром а3 – це автономні гемопротеїни, оскільки кожний з них характеризується визначеним спектром, крім того, вони виявляють різну чутливість до дії оксиду вуглецю і ціаніду. Однак було доведено, що вони входять до складу комплексу, який одержав назву цитохром аа3. Він містить дві молекули гема, у кожній з який атом заліза може переходити зі стану Fe2+ у стан Fe3+ і назад у ході окислення і відновлення, а також два атоми Сu, кожний з яких взаємодіє з одним з гемів.

Фенолаза (тирозиназа, поліфенолоксидаза, катехолоксидаза) – це мідьвмісний фермент із широкою специфічністю. Він каталізує перетворення монофенолу (у присутності о-дифенолу) у о-хінон. Мідь виявлена в ряді інших ферментів, зокрема в уриказі, яка каталізує окислення сечової кислоти в алантоїн, і в моноамінооксидазі, яка окислює адреналін і тирамін у мітохондріях.

2) Аеробні дегідрогенази – ферменти, які каталізують видалення водню із субстрату; на відміну від оксидаз вони як акцептор водню можуть використовувати не тільки кисень, а і штучні акцептори, такі, як метиленовий синій. Ці дегідрогенази відносяться до флавопротеїнів, і продуктом реакції, яку вони каталізують є пероксид водню, а не вода:

,

 

Аеробні дегідрогенази – флавопротеїни; містять простетичні групи – флавінмононуклеотид (ФМН) або флавінаденіндинуклеотид (ФАД).

До ферментів групи аеробних дегідрогеназ відноситься дегідрогеназа L-амінокислот (оксидаза L-амінокислот) ФМН-вмісний фермент, який знаходиться в нирках і володіє широкою специфічністю, каталізує окисне дезамінування природних L-амінокислот. Широко поширена ксантиндегідрогеназа (ксантиноксидаза); вона виявлена в молоці, у тонкому кишечнику, нирках і печінці.

Ксантиндегідрогеназа містить молібден; відіграє важливу роль у перетворенні пуринових основ у сечову кислоту в печінці і нирках. Особливе значення має для птахів, які екскретують сечову кислоту як головний кінцевий азотовмісний продукт метаболізму пуринів, а також катаболізму білків і амінокислот.

Альдегіддегідрогеназа – ФАД-вмісний фермент, що знаходиться в печінці. Це – металофлавопротеїн – містить молібден і негемове залізо, окислює альдегіди і N-гетероциклічні субстрати.

Глюкозооксидаза – ФАД-специфічний фермент, який одержують із грибів. Вона важлива тим, що використовується при визначенні глюкози.

Механізм окислення і відновлення, що здійснюється цими ферментами, дуже складний. Судячи з наявних даних, відбувається двостадійне відновлення ізоаллоксазонового кільця з проміжним утворенням семіхінона (вільного радикала):

3) Анаеробні дегідрогенази – ферменти, які каталізують видалення водню із субстрату, але не здатні використовувати кисень як акцептор водню. До цього класу належить велике число ферментів. Вони виконують дві функції:

а) перенесення водню з одного субстрату на інший в спряженій окисно-відновній реакції:

Ці дегідрогенази специфічні до субстратів, але часто використовують один і той же кофермент або переносник водню. Оскільки реакції, які розглядаються оборотні, то вони забезпечують у клітині вільне перенесення відновних еквівалентів. Реакції цього типу призводять до окислення одного субстрату за рахунок відновлення іншого, особливо важливі для здійснення окисних процесів за відсутності кисню.

б) функцію компонентів дихального ланцюга забезпечуючи транспорт електронів від субстрату на кисень:

Поділяються на:

Дегідрогенази, залежні від нікотинамідних коферментів. До цієї категорії належить багато дегідрогеназ. Вони специфічні або до нікотинамідаденіндинуклеотиду (НАД+), або до нікотинамідаденіндинуклеотидфосфату (НАДФ+), які виконують роль коферментів (рис. 1). НАД+ і НАДФ+ утворюються в організмі людини з вітаміну В5. Для синтезу НАД+ чи НАДФ+ ферменти, які знаходяться в цитозолі більшості клітин, використовують тільки нікотинову кислоту, але не нікотинамід. Нікотинамідний фрагмент НАД+ утворюється з нікотинатного фрагмента, коли останній знаходиться в складі нуклеотиду; амідна група надходить від глутаміну (рис. 1).

 

 

Рис 1. Синтез і розклад нікотинамідаденіндинуклеотиду (НАД).

 

Є дані про те, що в мітохондріях для синтезу НАД+ використовується нікотинамід. Коферменти відновлюються специфічними субстратами дегідрогеназ і окислюються адекватним акцептором електронів (рис. 2).

 

НАД+ + AH2 D НАДH + H+ + A

 

Рис 2. Механізм окислення і відновлення нікотинамідних коферментів.

 

У загальному випадку НАД-залежні дегідрогенази каталізують окисно-відновні реакції окисних шляхів метаболізму – гліколізу, циклу лимонної кислоти, дихального ланцюга мітохондрій. НАДФ-залежні дегідрогенази беруть участь у процесах відновного синтезу, зокрема у позамітохондріальному синтезі жирних кислот і стероїдів; вони також є коферментами дегідрогеназ пентозофосфатного шляху. Деякі дегідрогенази, які функціонують з нікотинамідними коферментами, містять іон цинку, зокрема алкогольдегідрогеназа печінки і гліцеральдегід-3-фосфатдегідрогеназа скелетних м'язів. Припускають, що іони цинку не беруть участь безпосередньо в процесах окислення і відновлення.

Рибофлавінзалежні дегідрогенази. Флавінові групи цих дегідрогеназ ті ж, що й в аеробних дегідрогеназ, ФМН і ФАД. Більшість рибофлавін-залежних анаеробних дегідрогеназ або бере участь у транспорті електронів по дихальному ланцюзі, або поставляє електрони для цього ланцюга. НАДФ-дегідрогеназа – компонент дихального ланцюга, яка переносить електрони від НАДН до більш електропозитивних компонентів. Інші дегідрогенази, наприклад сукцинатдегідрогеназа, ацил-СоА-дегідрогеназа і мітохондріальна гліцерол-3-фосфат-дегідрогеназа переносять відновні еквіваленти від субстрату безпосередньо на дихальний ланцюг. Ще одна функція флавін-залежних дегідрогеназ – каталіз дигідроліпоїл-дегідрогеназою дегідрування відновленого ліпоату (інтермедіату при окисному декарбоксилуванні пірувату й a-кетоглутарату). У цьому випадку внаслідок низького значення окисно-відновного потенціалу системи ліпоату переносником водню від відновленого ліпоату до НАД+ є флавопротеїн (ФАД). Електрон-переносний флавопротеїн є проміжним переносником електронів між ацил-СоА-дегідрогеназою і дихальним ланцюгом.

в) Цитохроми. За винятком розглянутої вище цитохромоксидази, цитохроми класифікуються як анаеробні дегідрогенази. Їх ідентифікація і вивчення полегшуються тією обставиною, що у відновленому стані вони мають характерні смуги в спектрі поглинання, які зникають при окисленні. У дихальному ланцюзі вони служать переносниками електронів від флавопротеїнів до цитохромоксидази. Цитохроми є залізовмісними гемопротеїнами, у яких атом заліза переходить зі стану Fe2+ у Fe3+ і назад у процесі окислення і відновлення. До складу дихального ланцюга входять цитохроми b, с1, с, а і а3 (цитохромоксидаза). З них розчинним є тільки цитохром с. Крім дихального ланцюга цитохроми містяться в ендоплазматичному ретикулумі (цитохроми Р450 і b5), у рослинних клітинах, бактеріях і дріжджах.

Відновлення нікотинаміду субстратом (АН2) по положенню 4 відбувається стереоспецифічно. Один з атомів водню переноситься від субстрату в положення 4 у виді ядра водню з двома електронами (гідрид-іон, Н- ): він може приєднатися або в А-, або у В-положенні в залежності від специфічності дегідрогенази, яка каталізує дану реакції. Інший водень, який відщеплюється від субстрату, залишається вільним у виді іона водню.

4) Гідроксипероксидази – ферменти, які використовують як акцептор перекис водню або органічні перекиси. До цієї категорії відносяться два типи ферментів: пероксидази, які знаходяться в складі молока, в рослинах, лейкоцитах, тромбоцитах, еритроцитах і т.д., і каталаза, яка функціонує в тканинах тварин і рослин.

Пероксидаза. Спочатку пероксидази вважалися рослинними ферментами, пізніше вони були виявлені також у молоці, лейкоцитах, тромбоцитах, а також у тканинах, у яких відбувається метаболізм ейкозаноїдів. Простетичною групою є протогем, який на відміну від гемових груп більшості гемопротеїнів дуже слабко зв'язаний з апоферментом. У реакції, яку каталізує пероксидаза, перекис водню відновлюється за рахунок сполук, що виступають як донори електронів, таких, як аскорбат, хінони чи цитохром с. Реакція, яку каталізує пероксидаза, має складний характер; сумарна реакція виглядає в такий спосіб:

 

Н2О2 + АН2 2О + А

В еритроцитах глутатіонпероксидаза, яка містить як простетичну групу – селен, каталізує розклад Н2О2 і гідроперекисів ліпідів відновленим глутатіоном і в такий спосіб захищає ліпіди мембран і гемоглобін від окислення перекисами.

Каталаза. Гемопротеїн, який містить чотири гемові групи. Поряд з пероксидазною активністю каталаза здатна використовувати одну молекулу Н2О2 як донор електронів, а іншу – як окислювач, тобто акцептор електронів. In vivo у більшості випадків каталаза розкладає пероксид водню:

2О2 2О + О2

Каталаза міститься у крові, кістковому мозку, мембранах слизових оболонок, нирках і печінці. Її функція – розкладання перекису водню, що утворюється при дії аеробних дегідрогеназ. У багатьох тканинах, включаючи і печінку, виявлені мікротільця, пероксисоми, які багаті аеробними дегідрогеназами і каталазою. Очевидно, біологічно вигідно групувати як ферменти, що призводять до утворення Н2О2, так і ферменти, що розкладають його в одному місці:

До ферментів, що забезпечують утворення Н2О2, крім пероксисомних ферментів відносяться також мітохондріальні і мікросомні системи транспорту електронів.

5) Оксигенази – ферменти, які каталізують пряме введення кисню в молекулу субстрату.

Оксигенази не належать до ферментів, що каталізують реакції, які збагачують клітину енергією; вони беруть участь у синтезі і розкладі багатьох типів метаболітів. Ферменти цієї групи каталізують включення кисню в молекулу субстрату.

Воно відбувається в дві стадії: 1) кисень зв'язується з активним центром ферменту; 2) відбувається реакція, у результаті якої зв'язаний кисень відновлюється чи переноситься на субстрат. Оксигенази діляться на дві підгрупи.

а) Діоксігенази (кисень-трансферази, істинні оксигенази). Ці ферменти каталізують включення в молекулу субстрату обох атомів молекули кисню:

А + О2 ® АО2.

Приклад – залізовмісні ферменти гомогентизатдіоксігеназа і 3-гідроксиантранілат-діоксігеназа із супернатантної фракції гомогенату печінки, а також гемвмісні ферменти, зокрема L-триптофандіоксігеназа (триптофанпіролаза) з печінки.

б) Монооксигенази (оксидази зі змішаною функцією, гідроксилази). Ці ферменти каталізують включення в субстрат тільки одного з атомів молекули кисню. Інший атом кисню відновлюється до води; для цього необхідний додатковий донор електронів (косубстрат):

А–Н + О2 + ZH2 ® А–ОН + Н2О + Z

Мікросомні цитохром Р450-вмісні монооксигеназні системи. До цієї групи належать ферменти, які беруть участь у метаболізмі багатьох лікарських речовин шляхом їх гідроксилювання. Вони знаходяться в мікросомах печінки разом з цитохромом Р450 і цитохромом b5. Відновниками цих цитохромів є НАДН і НАДФН (рис. 3); цитохроми окислюються субстратами в результаті серії ферментативних реакцій, які складають так званий гідроксилазний цикл (рис. 4):

Лік–Н + О2 + 2Fe2+(P450) + Н+ Лік–ОН + Н2О + 2Fe3+

(Лік – лікарська речовина).

Рис 3. Ланцюг транспорту електронів в мікросомах.

Ціанід (CN-) гальмує стадію, вказану на рисунку.

 

Рис 4. Цитохром Р450-гідроксилазний цикл у мікросомах.

 

До лікарських речовин, метаболізм яких відбувається за участю розглянутих систем, відносяться: бенз[a]пірен, амінопірин, анілін, морфін і бензофетамін. Багато лікарських речовин, наприклад фенобарбітал, здатний індукувати синтез мікросомних ферментів і цитохрому Р450.

Мітохондріальні цитохром Р450-вмісні монооксигеназні системи. Ці системи знаходяться в стероїдогенних тканинах – у корі наднирників, у сім’яниках, яєчниках і плаценті; вони беруть участь у біосинтезі стероїдних гормонів з холестеролу (гідроксилювання по С22 і С20 при відщепленні бічного ланцюга і по положеннях 11b і 18). Ферменти ниркової системи каталізують гідроксилювання 25-гідроксихолекальциферолу по положеннях 1a і 24; у печінці відбувається гідроксилювання холестеролу по положенню 26 при біосинтезі жовчних кислот. У корі наднирників вміст мітохондріального цитохрома Р450 у шість разів вище, ніж вміст цитохромів дихального ланцюга. Монооксигеназна система складається з трьох компонентів, локалізованих у внутрішній мітохондріальній мембрані на границі з матриксом: НАДФ-специфічного ФАД-вмісного флавопротеїну, Fе2S2-білка (адренодоксину) і цитохрома Р450 (рис. 5).

Рис 5. Мітохондріальна цитохром Р450-монооксигеназна система.

 

Наведена система типова для гідроксилаз стероїдів у корі наднирників. Мікросомна цитохром Р450-гідроксилаза печінки не має потреби в присутності залізо-сірчаного білка Fe2S2. Оксид вуглецю (СО) гальмує зазначену на рисунку стадію.

Fe2S2 – залізо-сірчаний білок (адренодоксин). Оскільки НАДФ(H) не може проникати в мітохондріальну мембрану, джерелами відновних еквівалентів є такі субстрати, як малат і ізоцитрат, для яких усередині мітохондрій є специфічні НАДФ-залежні дегідрогенази.

Метаболізм супероксид-радикала. Кисень є потенційно токсичною речовиною. Донедавна його токсичність пов'язували з утворенням Н2О2. Однак останнім часом, приймаючи на увагу, по-перше, ту обставину, що кисень у тканинах легко відновлюється в супероксидний аніон-радикал (O2-.), і, по-друге, наявність в аеробних організмів супероксиддисмутази (СОД) (її немає в облігатних анаеробів), було висунуто припущення про те, що токсичність кисню обумовлена його перетворенням у супероксид. Однак прямих даних про токсичність супероксид-радикала поки не отримано.

Супероксид утворюється в ході одноелектронного окислення молекулярним киснем відновленого флавіну, наприклад флавіну в складі ксантиндегідрогенази. Він утворюється також при одноелектронному окисленні молекулярним киснем відновленого компонента дихального ланцюга:

Enz–H2 + O2 ® Enz–H + O2-. + H+.

Супероксид може відновлювати окислений цитохром с:

О2-. + Цит с (Fе3+) ® О2 + Цит с (Fе2+).

Він відщеплюється також специфічним ферментом – супероксиддисмутазою:

О2-. + О2-. + 2Н+ Н2О2 + О2

У цій реакції супероксид виступає одночасно як окислювач, так відновник. Хімічна дія супероксиду в тканинах підсилюється в результаті ініціювання ланцюгової реакції утворення вільних радикалів. Було висловлено припущення, що О2-., зв'язаний з цитохромом Р450, є інтермедіатом при активації кисню в процесі реакцій гідроксилювання (рис 4).

Функцією супероксиддисмутази є, очевидно, захист аеробних організмів від ушкоджуючої дії супероксиду. Фермент виявляється в декількох внутрішньоклітинних кампартментах. Цитозольний фермент складається з двох подібних субодиниць, які містять по одному іонові Сu2+ і Zn2+; мітохондріальний фермент, так само як і фермент, виявлений у бактерій, містить іон Мn2+. Ця обставина служить ще одним доказом на користь гіпотези про походження мітохондрій із прокаріот, що вступили в симбіоз із протоеукаріотами. Дисмутаза присутня у всіх основних тканинах аеробів. Перебування тварин в атмосфері 100%-ного кисню викликає адаптивне підвищення вмісту дисмутази, особливо в легенях; тривале перебування в такій атмосфері призводить до ушкодження легень і летальному результату. Антиоксиданти, наприклад a-токоферол (вітамін Е), здатні вловлювати вільні радикали, такі, як О2-., знижуючи тим самим токсичність кисню.

Окислювальне фосфорилювання

Розглянуті вище реакції окислення – відновлення різних субстратів, що здійснюються в живих організмах у процесі внутрішньоклітинного обміну, дістали назву біологічного окислення. Процеси біологічного окислення, що проходять у клітинах гетеротрофних організмів, є основним джерелом енергії, необхідної для забезпечення їхньої життєдіяльності. Енергія, що виділяється при анаеробному та аеробному окисленні різних субстратів, нагромаджується в макроергічних зв'язках АТФ – універсальної сполуки, яка може виступати в ролі акумулятора, трансформатора та донора енергії. Близько 50 % енергії окислення органічних сполук резервується в макроергічних зв'язках АТФ. Утворюється АТФ з АДФ і активного фосфату, причому активація останнього і перетворення його на активний фосфорил відбуваються за рахунок енергії окислення органічних сполук. Синтез АТФ з АДФ і неорганічного фосфату, активація якого спряжена з процесами окислення в організмі, називається фосфорилюючим окисленням. Залежно від принципу енергетичного спряження розрізняють фосфорилююче окислення на рівні субстрату та на рівні електронно-транспортного ланцюга. Фосфорилююче окислення на рівні субстрату – це синтез АТФ з АДФ і активного фосфорилу внаслідок перенесення його з продукту окислення субстрату на АДФ. Так синтезується незначна кількість АТФ. Реакції фосфорилюючого окислення на рівні субстрату здійснюються зокрема в процесі анаеробного окислення вуглеводів. Так, у процесі окислення глюкозо-6-фосфату утворюється субстрат, що має макроергічний зв'язок – 1,3-дифосфогліцеринова кислота, яка може передавати активний фосфорил на АДФ, внаслідок чого утворюється молекула АТФ (див. обмін вуглеводів).

У процесі гліколізу проходить ще одна реакція фосфорилюючого окислення (на рівні субстрату) – при перенесенні активного фосфорилу з фосфоенолпірувату, продукту окислення глюкозо-6-фосфату на АДФ (див. обмін вуглеводів).

На третьому етапі виділення енергії (під час аеробного окислення в циклі Кребса) також відбувається реакція фосфорилюючого окислення на рівні субстрату – під час перенесення активного фосфорилу з сукцинілфосфату на ГДФ (див. обмін вуглеводів). Утворена молекула ГТФ вступає в обмінну реакцію АДФ, внаслідок чого утворюється молекула АТФ:

ІТФ + АДФ ® АТФ + ГДФ.

Другий вид енергетичного спряження – фосфорилююче окислення на рівні електронно-транспортного ланцюга – здійснюється в процесі тканинного дихання або біологічного окислення на рівні електронно-транспортного ланцюга.

Значний внесок у з'ясування цього механізму зробили В.П. Скулачов, С.Є. Северин, П. Мітчелл. Дослідженнями було встановлено, що в процесі біологічного окислення під час перенесення протонів та електронів по системі дихального ланцюга, спряжених з процесами окислення, на певних його ділянках відбувається активація неорганічного фосфату і перетворення його на активний фосфорил, який взаємодіє з АДФ і забезпечує синтез АТФ. При перенесенні електронів по системі дихального ланцюга вільна енергія системи поступово зменшується. Згідно з розрахунками, стандартна зміна вільної енергії системи при перенесенні двох електронів по системі дихального ланцюга становить 220 кДж, що достатньо для синтезу 6 – 7 молекул АТФ (враховуючи, що вільна енергія гідролізу АТФ в середньому дорівнює 30,6 кДж; 220 : 30,6 = 7). Однак дослідженнями було встановлено, що при перенесенні двох електронів по системі дихального ланцюга синтезується лише три молекули АТФ, тобто існує три пункти спряження, на яких процес окислення забезпечує активацію неорганічного фосфату і перенесення активного фосфорилу на АДФ. Саме на цих ділянках рівень зміни вільної енергії системи достатній для синтезу АТФ:

Перша молекула АТФ синтезується при перенесенні електронів і протонів від нікотинамідних до флавінових коферментів, друга – при перенесенні електронів від цитохрому b до цитохрому с, третя – утворюється на ділянці перенесення електронів з цитохромоксидази (аа3) на кисень. Отже, під час окислення двох атомів водню в дихальному ланцюгу утворюється три молекули АТФ.

Ступінь спряження окислення і фосфорилювання може бути різний, залежно від умов та стану клітини. Показником спряження окислення і фосфорилювання є коефцієнт Р/О (коефіцієнт фосфорилювання) або відношення зв'язаного неорганічного фосфату до поглиненого в процесі дихання кисню (Р/О = 3, якщо первинною дегідрогеназою є НАД+ і Р/О = 2, якщо водень з субстрату відщеплюють флавінові дегідрогенази). Інтенсивність процесу фосфорилюючого окислення регулюється співвідношенням АТФ/АДФ. Чим менше це співвідношення, тим інтенсивніше відбувається дихання та утворення АТФ.

Фосфорилююче окислення на рівні електронно-транспортного ланцюга відбувається в мітохондріях. Ферментні системи, що каталізують даний процес, локалізовані у внутрішніх мембранах мітохондрій:

Враховуючи їхні функції в спряженні процесів окислення і фосфорилювання, В.П. Скулачов назвав їх „спряжуючими”. Оскільки в процесі фосфорилюючого окислення на рівні електронно-транспортного ланцюга утворюється основна маса АТФ – сполуки, якій належить центральна роль в енергозабезпеченні організму, мітохондрії дістали назву „енергетичних станцій” клітини. Існує кілька гіпотез щодо пояснення механізму фосфорилюючого окислення в процесі біологічного окислення на рівні електронно-транспортного ланцюга.

Хімічна гіпотеза. В основу всіх хімічних гіпотез покладено уявлення про те, що окислення субстратів сприяє утворенню макроергічних зв'язків між неорганічним фосфатом та певними органічними сполуками, з яких він переноситься на АДФ. Хімічна гіпотеза була запропонована Ліпманом. Суть її полягає в тому, що енергія, яка виділяється при перенесенні електронів у дихальному ланцюгу, спочатку використовується для утворення певних гіпотетичних, багатих на енергію сполук, а потім передається для синтезу АТФ. Схематично цей процес можна показати так:

А-Н2 + Х + Б D А~X + Б-Н2; А~Х + Фн = А + Х~Ф; X~Ф + АДФ = X + АТФ,

де А і Б – речовини, що переносять електрони; Фн – неорганічний фосфат; X – невідома, гіпотетична речовина.

 

Однак хімічна гіпотеза до цього часу не дістала експериментального підтвердження.

Конформаційні гіпотези. Ці гіпотези пояснюють синтез АТФ з АДФ і неорганічного фосфату внаслідок конформаційних переходів, які виникають під час окислення. Проте гіпотези експериментального підтвердження не знайшли, хоча окремі моменти їх були використані П. Мітчеллом при розробці хеміосмотичної концепції спряження процесів окислення та фосфорилювання на рівні електронно-транспортного ланцюга, яка нині є загальноприйнятою. Основним постулатом гіпотези є те, що під час функціонування електронно-транспортних ланцюгів виникає осмотична енергія (енергія концентраційного градієнта), яка використовується для здійснення хімічної роботи – синтезу АТФ (звідки і назва – хеміосмотична гіпотеза), тобто гіпотеза передбачає перехід хімічної енергії, що виділяється під час транспорту електронів, на градієнт мембранного електрохімічного потенціалу іонів водню та перетворення останнього на стабільну енергію макроергічних зв'язків АТФ. Рушійною силою процесу фосфорилювання є градієнт електрохімічного потенціалу протонів водню (D`mН+), що виникає на спряжуючій мембрані, яка має високий електричний опір та низьку проникність для заряджених часточок (іонів Н+ та ОН–). Перенесення їх забезпечується протонними насосами, які відкачують протони з матрикса в міжмембранний простір (проти градієнта концентрації), внаслідок чого відбувається закислення міжмембранного простору. Зовнішня частина спряжуючої мембрани при цьому набуває позитивного заряду. Однак у матриксі створюється надлишок іонів ОН–, що призводить до підлуження середовища та появи негативного заряду на внутрішній частині спряжуючої мембрани (збоку матрикса). Отже, електрохімічний потенціал (D`mН+), який виникає на спряжуючій мембрані, складається з двох компонентів – електричного (різниці електричних потенціалів – DY) та осмотичного (концентраційного – DрН):

D`mН+ = DY + DрН.

Зворотний потік протонів (за градієнтом концентрації) відбувається через Н+–АТФ-азний комплекс. Саме цей потік протонів забезпечує синтез АТФ. Н+–АТФ-азний комплекс спряжуючої мембрани – це фермент АТФ-синтетаза, який складається з фактора F1 та мембранних компонентів (комплексу F0). Фактор F1-мультимер з молекулярною масою 360 тис., складається з п'яти типів субодиниць – a, b, g, t, e. Основні каталітичні функції даного комплексу забезпечуються a- і b-субодиницями. На a-субодиниці локалізується активний центр фактора, а на b-субодиниці – центр зв'язування субстрату (АДФ, Фн). До складу комплексу F0 входять кілька видів білків з молекулярною масою 19 – 30 тис., які забезпечують утворення протонпровідного каналу та спрямованість потоку протонів. Комплекс F0 виконує роль рецепторної та спряжуючої ділянок ферменту, а фактор F1 – каталітичної. Н+–АТФ-азний комплекс локалізується в спряжуючій мембрані мітохондрій так, що комплекс F0 пронизує всю мембрану, а фактор F1 – локалізується на внутрішньому боці мембрани мітохондрій (з боку матрикса). Цей комплекс нагадує грибоподібні вирости, в яких ніжка гриба пронизує товщу мембрани, а головка – локалізується на поверхні крист.

Нині існує кілька пояснень механізму спряження окислення і фосфорилювання. Суть більшості з них полягає в тому, що процес спряження здійснюється внаслідок використання енергії (D`mН+) при нагромадженні протонів (Н+) в активному центрі Н+–АТФ-азної системи, розміщеної у факторі F1. Нагромадження їх призводить до активації неорганічного фосфату, утворення активного фосфорилу, зв'язаного b-субодиницею фактора F1 внаслідок зняття з нього групи ОН та елімінації (видалення) води у матрикс. Одночасно відбувається й активація АДФ, зв'язаного з цією самою субодиницею фактора F1 після втрати протона при взаємодії з групою ОН матрикса. Активований фосфат і АДФ, сполучаючись, утворюють молекулу АТФ. Згідно з іншою концепцією, утворення АТФ відбувається так: протони Н+ в активному центрі спряжуючого фактора активують фосфат і карбоксильну групу однієї з субодиниць фактора F1, внаслідок чого утворюється фосфоензим з макроергічним зв'язком. При взаємодії АДФ з фосфоензимом утворюється АТФ. Існує також припущення, що роль протонів Н+ полягає у зміні конформації фактора F1 і що саме конформаційні видозміни активного центру Н+–АТФ-азного комплексу є рушійною силою для синтезу АТФ.

В результаті досліджень П. Бойєра було встановлено, що швидкий і зворотний синтез АТФ може відбуватися в активному центрі АТФ-ази без затрат енергії (D`mН+). Стадією, що лімітує дану реакцію, є виділення синтезованої АТФ з активного центру ферменту в матрикс, тобто з гідрофобної фази у водну.

Саме цей процес прискорюється при енергизації мембрани. Згідно з гіпотезою П. Мітчелла, на кожній мембрані є два протони, що транспортуються по електронно-транспортнсму ланцюгу крізь мембрану, внаслідок чого синтезується одна молекула АТФ. Отже, ланцюг перенесення електронів має три протонних насоси, що відповідають трьом ділянкам спряження. Дихальний ланцюг тричі перетинає внутрішню мембрану, при цьому кожна пара електронів, що переносяться від НАД?Н2 до кисню, виділяє три пари протонів із внутрішнього матрикса і переносить у міжмембранний простір. Цим зумовлене чергування в дихальному ланцюгу переносників протонів і електронів.

Крім окислення, спряженого з процесами фосфорилювання та синтезом АТФ, існує так зване вільне або нефосфорилююче окислення. Ферментні системи вільного окислення локалізовані на зовнішньому боці внутрішньої мембрани мітохондрій, а також на мембранах ендоплазматичного ретикулуму та інших клітинних органел. Вільне окислення, як правило, процесами фосфорилювання та спряженими з ними процесами синтезу АТФ не супроводжується. Енергія, що утворюється в процесі вільного окислення, розсіюється у вигляді теплоти. Вважають, що система дихального ланцюга, яка забезпечує фосфорилююче окислення, може переключатись на процеси вільного окислення, що відіграє важливу роль у процесах адаптації організму до умов навколишнього середовища. Зокрема, досліджено, що при охолодженні організму фосфорилююче окислення послаблюється, а вільне окислення, навпаки, посилюється. Внаслідок цього енергія окислення органічних сполук генерується на теплоту тіла, тобто в організмі існують механізми, що забезпечують зміну співвідношення між фосфорилюючим та вільним окисленням. Сполуки, що гальмують спряженість процесів окислення та фосфорилювання, називаються роз'єднуючими факторами.

У ролі роз'єднувачів можуть виступати різні метаболіти, біологічно активні сполуки, хімічні агенти, лікарські препарати тощо. Так, гормон тироксин послаблює спряженість процесів окислення і фосфорилювання, а інсулін, навпаки, посилює даний процес. У зв'язку з цим при надмірній секреції тироксину внаслідок гіперфункції щитовидної залози, як правило, спостерігається підвищення температури, хворі погано переносять тепло. Із хімічних агентів у ролі роз'єднувачів виступають такі сполуки, як динітрофенол, дикумарини та ін. Значно послаблюють спряженість процесів окислення і фосфорилювання також токсини патогенних мікроорганізмів, які викликають інфекційні захворювання, що супроводжуються підвищенням температури. За цих умов лікарські препарати, такі як ацетилсаліцилова кислота, фенацетин та інші, згубно діють на збудників захворювань і сприяють відновленню спряження між процесами окислення та фосфорилювання, в результаті чого знижується температура організму.

Зміна співвідношення між процесами фосфорилюючого та вільного окислення досить важлива для тварин, які впадають в анабіоз. Процеси життєдіяльності в цих тварин підтримуються на низькому рівні й енергетичні витрати мінімальні, тому в них процеси вільного окислення переважають над фосфорилюючим окисленням. Такі тварини мають запаси бурого жиру, що містить велику кількість мітохондрій, які спеціалізуються на продукуванні теплоти, що зігріває кров. У вигляді роз'єднувачів у даному випадку є жирні кислоти, що утворюються при розщепленні жирів і надходять у кров. Як тільки запаси жиру вичерпуються, процеси фосфорилювання поновлюються і тварини виходять з анабіозу. Це досить часто трапляється з тваринами, в яких запаси жиру недостатні, внаслідок чого стан анабіозу припиняється серед зими.

Зміна співвідношення між процесами фосфорилюючого та вільного окислення відіграє важливу роль в адаптації організмів до зміни умов навколишнього середовища. Отже, основною сполукою, що відіграє вирішальну роль в енергозабезпеченні організму, є АТФ, синтез якої здійснюється спряжено з процесами окислення в організмі. Енергія, що акумулюється в макроергічних зв'язках АТФ, може бути використана для різних потреб організму, процесів синтезу, руху, транспорту іонів, виконання роботи. Це зумовлено тим, що АТФ може виступати не лише в ролі акумулятора енергії, але і її трансформатора та донора. АТФ відіграє провідну роль в енергообміні, що пов'язано з особливостями її будови. Завдяки наявності сильного негативного заряду, за рахунок іонізованих фосфатних груп, відбувається зближення пуринового циклу з залишками фосфату. При цьому стабільна енергія, що вивільнюється під час розриву макроергічних зв'язків у молекулі АТФ, передається на пуриновий цикл і трансформується на мобільну енергію збудження електронів системи спряжених подвійних зв'язків пуринового циклу. Це викликає перехід у збуджений стан електронів хімічних сполук, що підлягають перетворенню, і надає їм підвищену реакційну здатність, створюючи потенційну можливість для зворотного перетворення мобільної енергії збуджених електронів на стабільну енергію хімічних зв'язків. Трансформація стабільної енергії фосфоангідридних зв'язків на мобільну енергію збуджених електронів пуринового циклу та зворотній процес – перетворення мобільної енергії збуджених електронів в стабільну енергію хімічних зв'язків органічних сполук є першим етапом перетворення енергії в організмах.

При енергетичному обміні в організмі основною ланкою є аденілатна система: АТФ та продукти її гідролізу – АДФ, АМФ, Фн і пірофосфат. Ця система подібно до акумулятора може заряджатись енергією від певних генераторів і передавати її на інші сполуки, забезпечуючи процеси енергетичного обміну, тобто в організмі проходить постійне утворення АТФ (нагромадження енергії) та її розщеплення, що супроводжується вивільненням енергії:

АДФ + Фн ® АТФ; АТФ ® АДФ + Фн.

При гідролізі АТФ утворюються молекула АДФ і неорганічний фосфат. Рівень зміни стандартної вільної енергії при цьому становить 37 – 42 кДж/моль. Під час гідролізу кінцевої фосфатної групи АДФ спостерігається близька величина зміни рівня стандартної вільної енергії, однак АДФ не є макроергічною сполукою, оскільки виділена енергія розсіюється у вигляді теплоти. При гідролізі АМФ рівень зміни стандартної вільної енергії становить 9,6 кДж/моль, тобто АМФ і АДФ не є макроергічними сполуками.

Крім схеми, наведеної вище, гідроліз АТФ може проходити з відщепленням двох залишків фосфату:

АТФ ® АМФ + Н4Р2О7

Пірофосфат, що утворюється при цьому, є макроергічною сполукою, однак його використання в обмінних процесах обмежене в зв'язку з тим, що під час гідролізу його макроергічних зв'язків вивільнюється теплова енергія.