Править] Горные породы разломов

Править] Разлом со смещением по падению

Разломы со смещением по падению делятся на сбросы, взбросы и надвиги. Сбросы происходят при растяжении земной коры, когда один блок земной коры (висячий бок) опускается относительно другого (подошвы). Участок земной коры, опущенный относительно окружающих участков сброса и находящийся между ними, называется грабеном. Если участок наоборот приподнят, то такой участок называют горстом. Сбросы регионального значения с небольшим углом называют срывом, либо отслаиванием. Взбросы происходят в обратном направлении — в них висячий бок движется наверх относительно подошвы, при этом угол наклона трещины превышает 45°. При взбросах земная кора сжимается. Ещё один вид разлома со смещением по падению — это надвиг, в нём движение происходит аналогично взбросу, но угол наклона трещины не превышает 45°. Надвиги обычно формируют скаты, рифты и складки. В результате образуются тектонические покровы и клиппы. Плоскостью разлома называется плоскость, вдоль которой происходит разрыв.

Сдвиги

Во время сдвига поверхность разлома расположена вертикально и подошва двигается влево либо вправо. В левосторонних сдвигах подошва движется в левую сторону, в правосторонних — в правую. Отдельным видом сдвига является трансформный разлом, который проходит перпендикулярно срединно-океаническим хребтам и разбивает их на сегменты шириной в среднем 400 км.

править] Горные породы разломов

Все разломы имеют измеримую толщину, которую вычисляют по величине деформированных пород, по которым определяют слой земной коры, где произошёл разрыв, типу горных пород, подвергшихся деформации и присутствию в природе жидкостей минерализации. Разлом, проходящий через различные слои литосферы, будет иметь различные типы горных пород на линии разлома. Длительное смещение по падению приводит к накладыванию друг на друга пород с характеристиками разных уровней земной коры. Это особенно заметно в случаях срывов или крупных надвигов.

11.Покрышки и коллекторы нефти и газа. Определение, состав и свойства

Необходимы следующие условия для формирования месторождений нефти и газа в залегающих в глубинах земли отложениях, из которых экономически выгодно извлекать углеводороды: наличие соответствующих пород-коллекторов и относительно непроницаемых покрышек и ловушек, которые предотвращают утечку углеводородов к земной поверхности.

Породы-коллекторы. Для того чтобы стать коллектором, порода должна обладать пористостью и проницаемостью. Те же свойства необходимы для сохранения нефти и газа, а также запасов подземных вод. Пористость – это процент содержания пустот в породе. Кристаллические породы могут иметь менее 1% пустот, тогда как некоторые песчаники – 35–40%, а кавернозные известняки могут обладать даже еще большей пористостью. Наиболее обычный тип пустот – промежутки между зернами крупнозернистых осадочных пород, подобных песчаникам. Размер зерен не влияет на процент пористости, если этот размер одинаков, но при смешении зерен разного размера мелкие зерна частично заполняют пространство между крупными, уменьшая тем самым процент пористости. Итоговая пористость обломочных пород зависит от степени последующей цементации зерен; цемент породы осаждается из циркулирующих вод (таковы многие карбонатные, сульфатные и другие «хемогенные» цементы; весьма распространенные глинистые цементы образуются при одновременном осаждении песчаных зерен и глинистых частиц). Если цементация полная, то пористость не сохраняется.

Другой распространенный тип пустот – это каверны растворения в карбонатных породах – известняках и доломитах. Всякий раз, когда такие породы находятся в зоне проникновения или циркуляции подземных вод, они в какой-то степени растворяются, и результатом может быть образование высокопористых пород. Размер каверн выщелачивания изменяется от микроскопических пор до гигантских пещер. Еще одним типом природных пустот являются каверны выветривания, а также трещины и щели.

Проницаемость – это свойство пород быть проводником при движении жидкостей или газов. Некоторые глины имеют такую же высокую пористость, как и песчаники, но они непроницаемы, так как размер их пор очень мал. Чем крупнее поры, тем выше проницаемость. Прямой связи между пористостью и проницаемостью, в общем, нет, хотя обычно породы с невысокой пористостью (10–15%) имеют также и низкую проницаемость. Если проницаемость мала, то нефть будет только слабо сочиться из породы и продуктивность окажется ниже экономически эффективной. Поэтому трудно извлекать нефть из глин, хотя обильные признаки нефти в них имеются во многих районах мира. Методы извлечения нефти из глинистых пород разрабатываются.

Пласты пород-коллекторов должны иметь определенную мощность и относительно постоянную проницаемость по латерали. Мощность, ниже которой пласт-коллектор не может разрабатываться с необходимой экономической эффективностью, зависит от многих причин, включая стоимость бурения в данном районе, глубину, пористость и объем (запасы) нефти.

Хотя обычно породами-коллекторами являются песчаники и карбонатные породы, любые породы, которые обладают необходимыми геологическими или структурными характеристиками, могут содержать нефть в промышленных количествах. Примером являются трещиноватые глины (аргиллиты), конгломераты, зоны выветривания на древних поверхностях гранитов и серпентизированные магматические образования.

Покрышки. Для образования залежей необходимо, чтобы пористые и проницаемые породы-коллекторы перекрывались породами, которые препятствуют последовательной миграции нефти и газа вверх. Обычные экранирующие породы – это относительно непроницаемые глины. Другие породы, которые могут служить покрышками, – это плотно сцементированные песчаники, пласты плотных карбонатных пород, глины плоскостей сбросов и даже тела соляных и изверженных пород.

12. Природные резервуары нефти и газа. Строение и типы

Природным резервуаром (по И. О. Броду) называется природ­ная емкость для нефти, газа и воды, внутри которой они могут циркулировать и форма которой обусловлена соотношением кол­лектора с вмещающим его (коллектор) плохо проницаемыми по­родами.

Нефть и газ аккумулируются в пустотном пространстве по­род—коллекторов природных резервуаров в пределах ловушек, образуя естественные скопления. Ловушками нефти и газа назы­ваются части природных резервуаров, в которых благодаря раз­личного рода структурным дислокациям, стратиграфическому или литологическому ограничению, а также тектоническому экраниро­ванию создаются условия для скопления нефти и газа.

Строение природных резервуаров определяется их типом, ве­щественным составом слагающих их пород, типом пустотного пространства пород-коллекторов и выдержанностью этих пород по площади.

Различают три основных типа резервуаров: пластовые, массив­ные и литологически ограниченные. Они могут быть сложены по­родами разного вещественного состава: терригенными, карбонат­ными, эвапоритовыми, вулканогенными.

Породы-коллекторы разного вещественного состава характеризуются соответствующим типом пустотного пространства - поровым, трещин-ным, кавернозным, смешанным в разных сочетаниях.

Всем продуктивным пластам в той или иной мере свойственна неоднородность, выражающаяся в изменчивости формы залегания и физических свойств коллекторов в пределах рассматриваемого пласта.

Изменчивость формы продуктивного пласта определяется нео­динаковой его толщиной (общей и эффективной), расчлененностью, выклиниванием всего пласта и слагающих его пропластков, их литолого-фациальным замещением непроницаемыми разностями.

Изменчивость физических свойств продук­тивного пласта обусловли-вается в первую очередь различием его коллекторских свойств.

13. Ловушки нефти и газа. Определение и типы

часть коллектора, условия залегания к-рого и взаимоотношения c экранирующими породами обеспечивают возможность накопления и длительного сохранения нефти и (или) газа. Элементами ловушки являются Коллектор нефти и газа, Покрышка, экран. Наиболее распространена классификация ловушек, сочетающая поисковые и генетич. признаки. Пo этим признакам выделяют ловушки сводовые, тупиковые, или экранированные, и линзообразные

Сводовые ловушки образуются в сводовых частях антиклиналей, над соляными куполами, глиняными диапирами, интрузивными массивами, в теле погребённых рифовых массивов и эрозионных выступов - под облекающими их покрышками. Ловушки экранированного типa возникают на крыльях и периклиналях антиклиналей, на флексурах и моноклиналях при появлении по восстанию их литологич. или гидродинамич. экранов. B зависимости от происхождения экрана различают ловушки: тектонически экранированные, возникающие в результате сброса, взброса, надвига или внедрения массива кам. соли, глиняного диапира, интрузивного тела, a также экранирования (боковой поверхностью жерла грязевого вулкана); стратиграфически экранированные - при несогласном перекрытии коллектора герметичным экраном; литологически экранированные - при выклинивании, уплотнении коллектора или запечатывании коллектора асфальтом; гидродинамически экранированные, возникающие на моноклиналях, флексурах, в зонах угловых несогласий и разрывных нарушений при нисходящем движении воды и встречном всплывании нефти. Линзообразныe (или литологически ограниченные) ловушки образуются в коллекторах линзообразного строения (погребённых песчаных барах, русловых и дельтовых песчаниках, пористых зонах карбонатных пород). Ловушки могут находиться в разл. частях структур.
Cв. 70% запасов нефти и газа находится в ловушках сводового типа, заключённых в антиклиналях.

14. Каустобиолиты (угольные и нефтяные ряды) Природные битумы

Каустобиолиты (от греч. — «горючий», — «жизнь» и — «камень») — горючие полезные ископаемые органического происхождения, представляющие собой продукты преобразования остатков растительных, реже животных, организмов под воздействием геологических факторов. Термин впервые предложен немецким учёным Г. Потонье в 1888 г., разделившим каустобиолиты по происхождению на 3 группы: сапропелиты, гумиты и липтобиолиты. В настоящее время по условиям образования делятся на каустобиолиты угольного ряда (торф, ископаемые угли, горючие сланцы, янтарь), сингенетичные осадкообразованию, и каустобиолиты нефтяного и нафтоидного ряда (природные битумы: нефти, мальты, асфальты, озокерит, природный газ и др.), миграционные, эпигенетичные осадкообразованию.

БИТУМЫ ПРИРОДНЫЕ (а. bitumen; н. naturliche Bitumina; ф. bitumes naturels, bitumes mineraux; и. betumenes naturales) — полезные ископаемые органического происхождения с первичной углеводородной основой, залегающие в недрах в твёрдом, вязком и вязко-пластичном состояниях. С генетической точки зрения к битумам природным относят нефть, газы природные горючие, конденсат газовый, а также естественные производные нефти (мальты, асфальты, асфальтиты, кериты, гумино-кериты, озокериты, антраксолиты и др.) и их аналоги (нафтоиды).

Битумы природные формируются в результате процессов: а) биохимических и химического окисления нефтей в зоне гипергенеза с образованием ряда асфальтовых битумов природных (мальта асфальт асфальтит оксикерит гуминокерит); б) концентрирования асфальтово-смолистых веществ за счёт нарушения равновесного состояния в коллоидной системе нефти с возникновением асфальтов, асфальтитов, реже мальт; в) природной деасфальтизации нефтей в залежах газом или лёгкими метановыми углеводородами с формированием твёрдых битумов природных — асфальтенитов (от асфальта до керитов); г) термального метаморфизма (контактового или гидротермального) смолистых нефтей и асфальтовых битумов природных с образованием керитов, антраксолитов, нефтяного кокса; д) дифференциации высоко-парафинистых нефтей при миграции с возникновением озокеритов; е) деструкции органического вещества в условиях контактового и динамометаморфизма с формированием битумов (нафтоидов) асфальтового и парафинового ряда, характеризующихся свойствами нефтяных битумов.

15.Состав и свойство нефти и газа

Нефть — жидкость от светло-коричневого (почти бесцветная) до тёмно-бурого (почти чёрного) цвета (хотя бывают образцы даже изумрудно-зелёной нефти). Средняя молекулярная масса 220—300 г/моль (редко 450—470). Плотность 0,65—1,05 (обычно 0,82—0,95) г/см³; нефть, плотность которой ниже 0,83, называется лёгкой, 0,831—0,860 — средней, выше 0,860 — тяжёлой Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления[5]. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно >28 °C, реже 100 °C в случае тяжёлых нефтей) и фракционным составом — выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450—500 °C (выкипает ~ 80 % объёма пробы), реже 560—580 °C (90—95 %). Температура кристаллизации от 60 до + 30 °C; зависит преимущественно от содержания в нефти парафина (чем его больше, тем температура кристаллизации выше) и лёгких фракций (чем их больше, тем эта температура ниже). Вязкость изменяется в широких пределах (от 1,98 до 265,90 мм²/с для различных нефтей, добываемых в России), определяется фракционным составом нефти и её температурой (чем она выше и больше количество лёгких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше). Удельная теплоёмкость 1,7—2,1 кДж/(кгК); удельная теплота сгорания (низшая) 43,7—46,2 МДж/кг; диэлектрическая проницаемость 2,0—2,5; электрическая проводимость [удельная] от 21010 до 0,31018 Ом1см1.

Нефть — легковоспламеняющаяся жидкость; температура вспышки от 35[6] до +121 °C (зависит от фракционного состава и содержания в ней растворённых газов). Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.

Химический состав

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть — жидкие углеводороды (> 500 веществ или обычно 80—90 % по массе) и гетероатомные органические соединения (4—5 %), преимущественно сернистые (около 250 веществ), азотистые (> 30 веществ) и кислородные (около 85 веществ), а также металлоорганические соединения (в основном ванадиевые и никелевые); остальные компоненты — растворённые углеводородные газы (C1-C4, от десятых долей до 4 %), вода (от следов до 10 %), минеральные соли (главным образом хлориды, 0,1—4000 мг/л и более), растворы солей органических кислот и др., механические примеси (частицы глины, песка, известняка).

Углеводородный состав

В основном в нефти представлены парафиновые (обычно 30—35, реже 40—50 % по объёму) и нафтеновые (25—75 %). В меньшей степени — соединения ароматического ряда (10—20, реже 35 %) и смешанного, или гибридного, строения (например, парафино-нафтеновые, нафтено-ароматические).