Химический и минералогический состав грунтов

Контрольно-курсовая работа

 

по дисциплине «Основы инженерной геологии и гидрологии»

Вариант №3

 

 

 

 

Выполнил: студент гр. 320822 _____________________ Блохин С. С.

 

Проверил: доц.___________________________________ Семашко С. В.

 

Тула 2012


 

Содержание

 

Введение 3

1. Тепловой режим Земли 4

2. Химический и минералогический состав грунтов­­­­­­­­­­­­­­­­­­­­­ 13

3. Палеонтологический метод определения возраста горных пород 29

Заключение 31

Список используемых источников 32

 

Введение

 

В данной контрольно- курсовой работе я буду рассматривать вопросы, касающиеся теплового режима земли, то есть, как распространяется температура в земле. Далее идет вопрос о химическом и минералогическом составе грунтов. И последним будет рассмотрен вопрос, касающийся палеонтологических методов определения возраста горных пород.

 

Тепловой режим Земли

 

Совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом, который зависит от соотношения энергии солнечной радиации, поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо - и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126-167), в черноземной зоне - 30-50 (126-209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. Чаще всего о тепловом режиме судят по ее температурному режиму. Температурный режим графически изображается в виде термоизоплет - кривых, соединяющих точки одинаковых температур.

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от -12 до +20°С. Выделяются 2 области - положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см. в основном совпадает с областью распространения многолетнемерзлых пород.

Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:

Мерзлотный. Среднегодовая температура профиля п. имеет отрицательный знак. Преобладает процесс охлаждения, сопровождающийся промерзанием почвенной толщи до верхней границы многолетнемерзлых пород;

Длительно-сезонно-промерзающий. Преобладает положительная среднегодовая температура профиля п. Отрицательные температуры проникают глубже 1 м. Длительность процесса промерзания но менее 5 месяцев. Сезонно промерзающая толща не смыкается с многолетнемерзлыми породами. Не исключено отсутствие многолетнемерзлых пород;

Сезонно-промерзающий. Среднегодовая температура профиля п. положительная. Сезонное промерзание может быть кратковременным (несколько дней) и продолжительным (не более 5 месяцев). Подстилающие породы немерзлые;

Непромерзающий. Среднегодовая температура профиля п. и температура самого холодного месяца положительные. Промерзания не наблюдаются. Подстилающие породы немерзлые. В верхней части земной коры выделяют три температурные зоны: І – зона сезонных колебаний, ІІ – зона постоянной температуры, ІІІ – зона нарастания температуры. Изменение температуры в первой зоне определяется климатическими условиями местности. Для средних широт характерна кривая а (летний период), и кривая б (в зимний период). В зимний период образуется подзона Іа, где температура опускается ниже 0оС. Глубина промерзания зависит от климата, типа горных пород и колеблется от нескольких см до 2м и более.
В зонах с умеренно теплым климатом, зона 1 характеризуется только кривой а.
По мере углубления в недра земли влияние суточных и сезонных температур уменьшается и на глубине 12 ¸ 40 м начинается зона постоянной температуры, равная среднегодовой температуры для данной местности. Если в этой зоне температура опускается ниже 0оС, то вода замерзает и образуется вечная мерзлота.
Ниже горизонта постоянных температур под влиянием внутренней теплоты земли или температуры горных пород с глубиной заметно повышается. Величина нарастания температуры на каждые 100 метров глубины называется геотермическим градиентом, а глубина (в метрах) ниже пояса постоянных температур, которой нужно достичь, чтоб температура повысилась на 1оС, называется геотермической ступенью. Увеличение температуры с глубиной имеет большой теоретический и практический интерес. С этим явлением нужно считаться при заложении глубоких шахт, прохождении туннелей (особенно в горах), бурении сверхглубоких скважин. Проходку некоторых глубоких шахт, например шахты золотых рудников в Трансваале (доведенных до глубины 2289 метра), пришлось приостановить, т.к. температура достигла +40оС. При проходе Симплонского туннеля в Альпах на глубине 2690 метра была отмечена температура +50оС.

Каковы же источники тепла внутри Земли? Как известно, в соответствии с современными представлениями Земля сформировалась в результате аккреции газово-пылевых частиц протопланетного облака в виде холодного тела. Следовательно, внутри Земли должны иметься источники тепла, создающие современный тепловой поток и высокую температуру в недрах Земли. Одним из источников внутренней тепловой энергии является радиогенное тепло, связанное с распадом радиоактивных долгоживущих элементов 238U, 235U, 232Th, 40K, 87Rb. Периоды полураспада этих изотопов соизмеримы с возрастом Земли, поэтому до сих пор они остаются важным источником тепловой энергии. В начальные этапы развития Земли могли быть поставщиками тепла и короткоживущие радиоактивные изотопы, такие, как 26Al, 38C1 и др. Вторым источником тепловой энергии предполагается гравитационная дифференциация вещества, зарождающаяся после некоторого разогрева на уровне ядра и, возможно, в слое верхней мантии. Но значительная часть тепла, связанная с гравитационной дифференциацией, по-видимому, рассеивалась в пространстве, особенно в начале формирования планеты. Дополнительным источником внутреннего тепла может быть приливное трение, возникающее при замедлении вращения Земли из-за приливного взаимодействия с Луной и в меньшей степени с Солнцем.

Температура внутри Земли. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами до максимальных глубин- 12 км (Кольская скважина). Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 10о С – геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. При этом, по данным Б. Гутенберга, пределы колебаний отличаются более чем в 25 раз. Примером тому являются два резко различных градиента: 1) 150оС на 1 км в штате Орегон (США), 2) 6оС на 1 км зарегистрирован в Южной Африке. Соответственно этим геотермическим градиентам изменяется и геотермическая ступень от 6,67 м в первом случае до 167 м – во втором. Наиболее часто встречаемые колебания градиента в пределах 20-50o, а геотермической ступени -15-45 м. Средний геотермический градиент издавна принимался в 30oС на 1 км.

По данным В. Н. Жаркова, геотермический градиент близ поверхности Земли оценивается в 20o С на 1 км. Если исходить из этих двух значений геотермического градиента и его неизменности в глубь Земли, то на глубине 100 км должна была бы быть температура 3000 или 2000oС. Однако это расходится с фактическими данными. Именно на этих глубинах периодически зарождаются магматические очаги, из которых изливается на поверхность лава, имеющая максимальную температуру 1200-1250oС. Учитывая этот своеобразный «термометр», ряд авторов (В. А. Любимов, В. А. Магницкий) считают, что на глубине 100 км температура не может превышать 1300-1500oС. При более высоких температурах породы мантии были бы полностью расплавлены, что противоречит свободному прохождению поперечных сейсмических волн. Таким образом, средний геотермический градиент прослеживается лишь до некоторой относительно небольшой глубины от поверхности (20-30 км), а дальше он должен уменьшаться. Но даже и в этом случае в одном и том же месте изменение температуры с глубиной неравномерно. Это можно видеть на примере изменения температуры с глубиной по Кольской скважине, расположенной в пределах устойчивого кристаллического щита платформы. При заложении этой скважины рассчитывали на геотермический градиент 10o на 1 км и, следовательно, на проектной глубине (15 км) ожидали температуру порядка 150oС. Однако такой градиент был только до глубины 3 км, а далее он стал увеличиваться в 1,5-2,0 раза. На глубине 7 км температура была 120oС, на 10 км -180oС, на 12 км -220oС. Предполагается, что на проектной глубине температура будет близка к 280oС. Вторым примером являются данные по скважине, заложенной в Северном Прикаспии, в районе более активного эндогенного режима. В ней на глубине 500 м температура оказалась равной 42,2oС, на 1500 м-69,9oС, на 2000 м-80,4oС, на 3000 м – 108,3oС.

Какова же температура в более глубоких зонах мантии и ядра Земли? Более или менее достоверные данные получены о температуре основания слоя В верхней мантии.

По данным В. Н. Жаркова, «детальные исследования фазовой диаграммы Mg2SiO4 - Fe2Si04 позволили определить реперную температуру на глубине, соответствующей первой зоне фазовых переходов (400 км)" (т.е. перехода оливина в шпинель). Температура здесь в результате указанных исследований около 1600oС.

Вопрос о распределении температур в мантии ниже слоя и в ядре Земли еще не решен, и поэтому высказываются различные представления. Можно только предположить, что температура с глубиной увеличивается при значительном уменьшении геотермического градиента и увеличении геотермической ступени. Предполагают, что температура в ядре Земли находится в пределах 4000-5000o С.

Средний химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды. К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1) железные, состоящие главным образом из никелистого железа (90-91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, или аэролиты, состоящие главным образом из железисто-магнезиальных силикатов и включений никелистого железа.

Наибольшее распространение имеют каменные метеориты- около 92,7% всех находок, железокаменные 1,3% и железные 5,6%. Каменные метеориты подразделяют на две группы: а) хондриты с мелкими округлыми зернами - хондрами ( 90%); б) ахондриты, не содержащие хондр. Состав каменных метеоритов близок к ультраосновным магматическим породам. По данным М. Ботта, в них около 12% железоникелевой фазы.

На основании анализа состава различных метеоритов, а также полученных экспериментальных геохимических и геофизических данных, рядом исследователей дается современная оценка валового элементарного состава Земли, представленная в таблице 1

 

Таблица 1. Средний химический состав Земли (Г.В. Войткевич, 1986)

 

Элементы Массовое содержание элементов, %  
по А.Ферсману, 1932 по В.Рамамурти и Р.Холлу, 1970 по Р.Ганапати и Э. Андерсу, 1974 по Дж. Смитту, 1979 по Дж. Моргану, Э. Андерсу, 1980  
O 28,50 30,75 28,50 31,30 30,13
Na 0,52 0,30 0,158 0,085 0,12
Mg 11,03 15,70 19,21 13,7 13,90
Al 1,22 1,29 1,77 1,83 1,41
Si 14,47 14,73 14,34 15,10 15,12
P 0,12 - 0,215 0.18 0,19
S 1,44 4,65 1,84 2.91 2,92
K 0,15 - 0,017 0,013 0,023
Ca 1,38 1,54 1,93 2,28
Тi - - 0,10 0,093 0,08
Cr 0,26 - 0,478 0,416 0,41
Mn 0,18 - 0,059 0,047 0,075
Fe 37,04 29,30 35,87 31,7 32.07
Ni 2,96 1,65 2,04 1,72 1,82

 

Как видно из данных таблицы, повышенное распространение относится к четырем важнейшим элементам - О, Fe, Si, Mg, составляющим свыше 91%. В группу менее распространенных элементов входят Ni, S, Ca, A1. Остальные элементы периодической системы Менделеева в глобальных масштабах по общему распространению имеют второстепенное значение. Если сравнить приведенные данные с составом земной коры, то отчетливо видно существенное различие, заключающееся в резком уменьшении О, A1, Si и значительном увеличении Fe, Mg и появлении в заметных количествах S и Ni.

Фигуру Земли называют геоидом. О глубинном строении Земли судят по продольным и поперечным сейсмическим волнам, которые, распространяясь внутри Земли, испытывают преломление, отражение и затухание, что свидетельствует о расслоенности Земли. Выделяют три главные области:

- земная кора;

- мантия: верхняя до глубины 900 км, нижняя до глубины 2900 км;

- ядро Земли внешнее до глубины 5120 км, внутреннее до глубины 6371 км.

 

Нагревание и охлаждение почвы

Единственным источником теплоты, получаемой почвой, важным в практическом отношении, являются солнечные лучи. Другие возможные источники — внутренняя теплота земного шара и физико-химич. процессы, происходящие в почве, не оказывают на температуру последней заметного влияния. Так, при удобрении гектара земли 30000 кг навоза (принимая слой почвы в 15 см толщины, а теплоемкость ее 0,2), заключающем в себе 6000 кг сухого вещества (с содержанием 36% углерода, 4,2% водорода и 26% кислорода), освобождается, при сгорании, только ок. 5 калорий тепла на 1 кв. м, что может повысить темп. почву лишь на1/8° в сутки, т. е. на величину, почти не имеющую никакого значения для жизни растений. И только при огромных количествах навоза, какие потребляются, напр., в огородной культуре, достигается надлежащий тепловой эффект. Количества поглощаемой и аккумулируемой почвой солнечной теплоты зависят как от свойств самой почвы, ее теплоемкости, теплопроводности, влажности, окраски, положения относительно стран света, так и от напряженности солнечных лучей, их наклона, продолжительности дня и состояния атмосферы. Между двумя образчиками одной и той же почвы, одним сухим, другим влажным, можно найти разницу в температуре (сухой — теплее) до 8°С, если выставить их непосредственно на солнце. Понижение температуры влажной земли происходит от испарений. Поэтому сырые почвы обыкновенно — холодные, и осушка их сопровождается усилением способности к Н. Такую же разницу в температуре почв производит и различная окраска их поверхности. Почвы темноцветные поглощают теплоту более энергично и нагреваются сильнее светлоокрашенных. Известно, напр., что в некоторых местностях, близких от границы произрастания виноградной лозы, черный виноград, требующий для созревания большей теплоты, чем белый, вызревает только на почвах темных. В высоких местностях Швейцарии существует даже обычай посыпать поля черной землей для ускорения таяния снега и, стало быть, для более быстрого развития растительности. Далее, Н. почв зависит от их наклона и теплопроводности; степень влияния последнего фактора обусловливается минералогическим составом почвенных частиц, плотности почвы и содержания в ней воды. Наклон солнечных лучей составляет одно из главнейших препятствий к поглощению солнечных лучей под высокими широтами. Эта косвенность падения лучей уравновешивается продолжительностью дня, благодаря чему возможно, напр., возделывание пшеницы даже в некоторых частях Швеции. Охлаждение почвы поставлено в зависимость от тех же факторов. По прекращении солнечного нагрева и понижении температуры атмосферы почва начинает излучать свою теплоту в пространство. Часть теплоты затрачивается также и на перевод жидкой влаги в газообразное состояние. Наиболее резкое понижение температуры почвы наступает в зимнее время, но такое охлаждение ослабляется до некоторой степени снежным покровом. Нагревание и охлаждение почвы имеет большое значение как на растения, так и на почву. Первое ускоряет, а второе ослабляет течение в ней химических процессов и испарение воды. Охлаждение может вызвать также образование внутренней росы, преимущественно в верхних слоях почвы, особенно в жарком и сухом климате; оно же, заставляя замерзать воду, находящуюся в скважинах почвы, способствует разрыхлению плотных почв.

Химический и минералогический состав грунтов

 

Грунт (нем. grund — основа, почва) — любые горные породы, почвы, осадки, техногенные (антропогенные) образования, представляющие собой многокомпонентные, динамичные системы, являющиеся компонентами геологической среды и объектом инженерно- хозяйственной деятельности человека.

Минералогический состав.

Многие свойства грунтов зависят от их минералогического состава.
Все виды рыхлых грунтов образуются из коренных скальных пород в результате их выветривания. Под выветриванием подразумевается процесс разрушения пород под влиянием физических и химических воздействий атмосферы, воды и организмов, в результате которого происходит измельчение пород, а также изменение их минералогического и химического составов.
Образование рыхлых грунтов происходит путем разрушения коренных пород, переноса продуктов разрушения и их отложения. Каждый из этих процессов, конечно, накладывает свой отпечаток на свойства раздробленных грунтов.
Для установления наименования грунта последовательно суммируются процентные содержания частиц исследуемого грунта сначала крупнее 10 мм, затем крупнее 2 мм, далее крупнее 0,5 мм и т. д.
В результате химического выветривания образуются вторичные минералы окиси алюминия. .
Кроме этих основных минералов в грунтах, как правило, содержатся примеси других солей и окислов, но в весьма небольшом количестве. Глинистые фракции имеют пластинчатую, чешуйчатую или реже игольчатую форму. Пылеватая фракция занимает промежуточное понижение между песчаной и глинистой; при этом крупная пыль обычно представлена обломками кварца, а мел – Кая —вторичными минералами.

Обломки кварца имеют размер от 0,05 до 2 мм и болee, размеры глинистых частиц значительно меньше; таким образом, между гранулометрическими фракциями и их минералогическим составом имеется некоторое соответствие. Именно этим и объясняется возможность классификационного разделения грунтов по их механическому Составу.

Частицы монтмориллонита имеют наименьшие размеры, доходящие до одной миллионной миллиметра. Остальные виды глинистых минералов имеют большие размеры, но все же менее 0, 005 мм.
Особенностью монтмориллонита является то, что его кристаллическая решетка имеет слабую связь отдельных шкетов между собой. При увлажнении монтмориллонита ВО взаимодействие с водой вступают не только наружные, но и внутренние поверхности кристаллической решетки, в результате чего происходит увеличение объема частицы. Так как такое расширение частицы может увеличить ее объем в десятки раз, даже ничтожное содержание этого минерала в грунте резко изменяет его свойства.
Механический состав грунтов, не имеющих связи между частицами, хорошо характеризует их свойства. Сопротивление таких грунтов внешней нагрузке происходит благодаря трению частиц друг о друга, а последнее зависит от размеров частиц.

В глинистых грунтах наличие связи между частицами обусловливает объединение отдельных глинистых частиц в агрегаты. Такие грунты имеют сложное строение, так как в них обычно содержатся песчаные, пылеватые, а также агрегированные и отдельные глинистые частицы. Таким образом, на свойства глинистых грунтов будет влиять как внутриагрегатная, так и межагрегатная прочность связей.

 

РАЗНОВИДНОСТИ ГРУНТОВ. Класс природных скальных грунтов - грунты с жесткими структурными связями (кристаллизационными и цементационными). Класс природных дисперсных грунтов -- грунты с водноколлоидными и механическими структурными. Класс природных мерзлых грунтов - грунты с криогенными структурными связями. Класс техногенных (скальных, дисперсных и мерзлых) грунтов - грунты с различными структурными связями, образованными в результате деятельности человека. Грунт скальный - грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа. Грунт полускальный - грунт, состоящий из одного или нескольких минералов, имеющих жесткие структурный связи цементационного типа. Условная граница между скальными и полускальными грунтами принимается по прочности на одноосное сжатие (Rc 5 МПа - скальные грунты, Rc 5 МПа -- полускальные грунты). Грунт дисперсный - грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путем и их отложения. Грунт глинистый - связный минеральный грунт, обладающий числом пластичности Ip 1. Торф -- органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных растений в условиях повышенной влажности при недостатке кислорода и содержащий 50 % (по массе) и более органических веществ.

Техногенные грунты - естественные грунты, измененные и перемещенные в результате производственной и хозяйственной деятельности человека, и антропогенные образования.

Антропогенные образования - твердые отходы производственной и хозяйственной деятельности человека, в результате которой произошло коренное изменение состава, структуры и текстуры природного минерального или органического сырья.

Природные перемещенные образования - природные грунты, перемещенные с мест их естественного залегания, подвергнутые частично производственной переработке в процессе их перемещения.

Природные образования, измененные в условиях естественного залегания, - природные грунты, для которых средние значения показателей химического состава изменены не менее чем на 15 %.

Грунты, измененные физическим воздействием, - природные грунты, в которых техногенное воздействие (уплотнение, замораживание, тепловое воздействие и т. д.) изменяет строение и фазовый состав.

Грунты, измененные химико-физическим воздействием, - природные грунты, в которых техногенное воздействие изменяет их вещественный состав, структуру и текстуру.

Насыпные грунты - техногенные грунты, перемещение и укладка которых осуществляются с использованием транспортных средств, взрыва.

Намывные грунты - техногенные грунты, перемещение и укладка которых осуществляются с помощью средств гидромеханизации.

Бытовые отходы - твердые отходы, образованные в результате бытовой деятельности человека.

Промышленные отходы - твердые отходы производства, полученные в результате химических и термических преобразований материалов природного происхождения.

Шлаки - продукты химических и термических преобразований горных пород, образующиеся при сжигании.

Шламы - высокодисперсные материалы, образующиеся в горнообогатительном, химическом и некоторых других видах производства. Золы - продукт сжигания твердого топлива.

Золошлаки - продукты комплексного термического преобразования горных пород и сжигания твердого топлива.

Под физическими свойствами грунтов мы понимаем свойства, которые проявляются под влиянием физических полей: гравитационного, теплового, электрического и др. К числу физических свойств относятся плотность грунтов, рассмотренная ранее, а также теплофизические, электрические и магнитные свойства грунтов. Теплофизические свойства характеризуют тепловой режим толщи грунтов. Это имеет большое значение как для познания таких природных процессов, как выветривание и почвообразование, так и для оценки устойчивости инженерных сооружений, особенно в области развития многолетнемерзлотных пород. Обычно определяются: удельная, или объемная, теплоемкость, теплопроводность, температуропроводность н термическое расширение грунтов. Значения этих свойств зависят от пористости, влажности и состава твердого компонента.

К числу дополнительных характеристик глинистых пород относится их консистенция, а песчанях – относительная плотность.

Гранулометрический состав – содержание в породе частиц различной крупности (фракции), выраженное в процентах к массе абсолютно едкого образца. Различают гранулометрический состав связанных пород (глинистых и лессовых) и несвязанных пород (песчаных и крупнообломочных). Размеры фракции подразделяются в соответствии с классификацией В. В. Охотина. В соответствии с этой классификацией по гранулометрическим элементам выделяются: А) валуны – более 200мм, Б) галька и щебень – 40-200 мм, В) гравий – 2-40 мм, Г) песок – 0,05-2 мм, Д) пыль – 0,001-0,05 мм, Е) глина – менее 0,001 мм. Плотность минеральной части породы – отношение массы твердых частиц к их объему. Плотность породы не зависит от ее пористости и влажности, а определяется плотностью слагающих пород минералов и присутствием органических веществ. Плотность минеральной части горных пород выражает среднюю плотность слагающих их минералов. Плотность главнейших породообразующих минералов песчаных и глинистых пород изменяется в сравнительно небольших пределах, вследствие чего и плотность минеральной части большинства этих пород изменяется мало, например от 2,65 г/см3 (супеси, пески) до 2,75 г/см3 у тяжелых разностей глин. Kоэффициент пористости (Е), равный отношению объема пор к объему твердой части породы, остающемуся постоянным при уплотнении: Е=n/m=n/(1-n)=(м -ск)/ ск Пористость песчаных и глинистых пород изменяется в щироких пределах в зависимости от формы и размера слагающих их частиц, т.е. от их дисперсности, степени отсортированности и однородности, плотности сложения, степени и характера цементации. У порода более тонкозернистых (тонкодисперсных), обладающих большей удельной поверхностью, пористость, как правило выше, чем у пород грубодисперсных с меньшей удельной поверхностью. В соответствии с этим пористость глинистых пород обычно выше, чем пористость песков, гравелистых и других обломочных пород, хотя поры и пустоты у последних крупнее. Пористость неоднородных по гранулометрическому составу пород обычно меньше, чем однородных, хорошо отсортированных, так как в неоднородных породах более мелкие частицы располагаются среди более крупных и общая плотность их упаковки их повышается. Коэффициент пористости песчаных и глинистых пород – это одна из основных характеристик, используемых при расчетах осадок сооружений. Влажность. Важнейшей характеристикой физического состояния, является количество воды, заполняющей их поры. В зависимости от степени влажности песчаные и глинистые породы могут находится в различном физическом состоянии, в соответствии с которым (особенно у глинистых пород) изменяется их прочность, деформируемость и устойчивость. Влажностью называется отношении массы воды (g2) к массе абсолютно сухой породы (массы скелета грунта) в данном объеме, выраженное в долях единицы или процентах. Это весовая влажность: W=g2/g1=(- cк)/ cк. Если определяется по образцам естественной влажности, то ее называют естественной. Влажность пород может быть охарактеризована также через объемную влажность, под которой понимается объем воды, содержащейся в единице объема сухой породы. Влажность глинистой породы при этом будет соответствовать ее полной влагоемкости, а у песчаных их полной влагоемкости. Влажность песчаных и глинистых пород в естественных условиях может изменятся в широких пределах. Например влажность песков в зоне аэрации нередко достигает 4-5%, в зоне капилярного увлажнения и насыщения 27-30%, а влажность м/з и т/з песков в этой зоне может достигать 35-40%.


Основные физико-механические свойства грунтов. Механические свойства горных пород определяют их поведение под воздействием внешних усилий – нагрузки. В песчаных и других обломочных и глинистых породах при этом происходит изменение внутреннего сложения и объема (уплотнение), т.е уменьшение пористости и увеличение концентрации минералах частиц в единице объема. Чем значит. эти изменения пород под воздействием определенной нагрузки, тем большей деформативностью они обладают. Когда под влиянием внеш. усилий в породах возникают касательные силы, превышающие сопротивление сдвига, порода начинают разрушаться, наступает потеря прочности. Следовательно, механические свойствава песчаных и глинистых пород как и любых других, характеризуются их деформируемостью и прочностью. Их выражают деформационными и прочностными показателями: деформационность – показателями сжимаемости (деформативности), а прочность – сопротивлением сдвигу. Они позволяют прогнозировать осадки сооружений, определять устойчивость пород в их основании, а при конструировании фундаментов предельно использовать несущие способность грунтов. Показателями, выражающие сопротивление пород сдвигу, дают возможность проектировать заложение откосов плотин, насыпей, дамб, бортов карьеров с минимальным объемом земляных работ, определять устойчивость склонов и оползней, определять рациональное сечение и устойчивость различных сооружений в т.ч. бетонных плотин. Сжимаемостью породы называют ее способность к уменьшению объема под воздействием нагрузки. При сжатии породы вертикальной нагрузкой в условиях свободного бокового расширения при одноосном сжатии относительной деформацией (е) называют отношение величины абсолютного уменьшения нагруженного образца (h) к его начальной высоте (h0) е=h/h0 Зависимость между напряжением () и величиной относ-й деформации (е) при нагрузках меньше предела пропорциональности определяется выражением: =Ее (Е – модуль упругости).. Сопротивление сдвигу. Прочностные свойства пород определяются рядом показателей, относящихся к категории прямых расчетных показателей. Прочность пород характеризуется способностью сопротивляться сдвигающим усилиям (сопротивление к сдвигу). Сдвигом называется процесс деформации и разрушения породы вследствие смещения одной ее части относительно другой. Сдвиг по данной площадке вызывается касательным напряжением к ней. Сопротивление сдвигу зависит от величины вертикальной нагрузки, приложенной к образцу. Прочность пород оценивается в основном по теории Мора, согласно которой разрушение тела происходит при определенном предельном соотношении нормальных и касательных напряжений. Физ-мех. свойства скальных и полускальных пород подразделяются также на физические, водные и механические. Главными физическими свойствами этих пород является плотность и пористость, кроме того у полускальных пород имеет значение влажность. Для характеристики физическогого состояния скальных и полускальных пород решающее значение имеют: степень их выветрелости, трещиноватости и закарстованности. Водные свойства главнейшие: водоустойчивость, влагоемкость и водопроницаемость. Водоустойчивость характеризуется в первую очередь их размягчаемостью. Любые горные породы, в том числе и кварцит, базальт и др. при насыщении водой размягчаются и теряют свою прочность.

Водопроницаемость. Скальные породы проницаемы только по трещинам. В полускальных – движение воды происходит как по трещинам, карстовым полостям и другим сверхкапиллярным пустотам, так и отчасти при соответствующих напорах – по микротрещинам и порам. Механические свойства скальных и полускальных пород характеризуются также прочностью и деформируемостью. Прочность скальных и полускальных пород принято выражать и оценивать временным сопротивлением сжатия, растяжению, сдвигу (скалыванию) и реже изгибу. Полускальные породы (песчаники и алевролиты с глинистым цементом, глинистые сланцы, аргиллиты, глинистые известняки, доломиты и мергели и др.) отличаются от скальных пород пониженными прочностью и сопротивляемостью деформациям. Деформации полускальных пород в обычных условиях до сравнительно небольшого значения нагрузки бывают упругими, затем когда нагрузка превышает предел пропорциональности, деформация растет быстрее нагрузки, получает развитие упруго-вязкие или остаточные пластические деформации. Имеются дополнительные характеристики физико-механических свойств скальных и полускальных пород. Такие как: крепость горных пород, твердость, истираемость, износ, абразивность, буримость, морозоустойчивость и др.

Деформационные свойства скальных грунтов.

Скальные грунты относятся к группе твердых. Минеральные частицы скальных грунтов сцементированы между собой веществом, которое заполняет пустоты между частицами и образует твердое тело. Прочность скальных грунтов зависит от минералогического состава частиц, их твердости и растворимости, степени заполнения пор цементирующим веществом и прочности вещества. Показатели механической прочности скальных грунтов колеблются в больших пределах — от марки камня 1000 и более (граниты, базальты, песчаники и др. с однородной мелкозернистой структурой и кремнистой цементацией) до марки камня 50 и менее (ракушечник, туф и др.). Скальные грунты практически не сжимаемы под влиянием давления на них веса сооружения.

Деформационные свойства скальных пород разделяют на упругие, пластические и реологические. Вообще твердым горным породам присущи: 1. Упруго-линейные деформации, следующие почти мгновенно за приложением нагрузки и носящие обратимый характер. 2. Нелинейно-упругие деформации, особенностью которых является криволинейная зависимость между напряжением и деформацией. Кривая медленной разгрузки следует за кривой нагрузки в обратной последовательности и возвращается в точку О. Это называется последействием (прямым — при загрузке и обратил _при разгрузке). Особенностью упругого последействия является его зависимость не только от величины нагрузки, но и от длительности их действия. 3. Пластические деформации, происходящие длительное время за приложением нагрузки и носящие необратимый характер (остаточные деформации). Пластические деформации зависят от продолжительности действия, величины и скорости возрастания напряжений. Упругая часть деформаций связана с объемными деформациями (сжатием, растяжением) кристаллических решеток минералов. Природа неупругих деформаций значительно сложнее. Они связаны с так называемой девиаторной частью напряжений, т. е. напряжениями, изменяющими форму - тела. Неупругие (пластические) деформации поликристаллических тел в основном являются результатом следующих процессов: 1) сдвиговых деформаций минеральных зерен — явлений трансляции (внутрикристаллического скольжения), двойникования, изгиба, пластинообразования и некоторых других; 2) диффузионных процессов, имеющих место при наличии «вакантных» (т. е. не занятых атомами) мест в узлах кристаллических решеток минералов и других дефектов и происходящих в форме переноса вещества (атомов, ионов) путем последовательного замещения «вакантных» мест в направлении деформирующей силы; 3) пограничных процессов — явлений относительного перемещения зерен и блоков по плоскостям спайности, полигонизации (дробление зерен), рекристаллизации и некоторых других. Если напряжение, вызывающее пластические деформации, по своей величине не превышает предельного значения (предела прочности) и остается постоянным, скорость пластического течения во времени падает, т. е. наблюдается упрочнение породы в процессе пластической деформации. Оно происходит вследствие роста удельной площади истинных контактов минеральных зерен в процессе полигонизации и уплотнения. По мере упорядочения структуры при пластическом течении, развитии микротрещин и т. д. сопротивление породы к сдвигу постепенно ослабевает. Данное явление, имеющее место при напряжениях, превышающих предел прочности, называется раз-Упрочнением в процессе пластической деформации. Развитие Деформаций во времени в этом случае приводит в конечном счете к разрушению породы. Реологические свойства характеризуют изменение (рост) во времени деформаций в горных породах при постоянном напряжении (явление ползучести), либо ослабление (уменьшение) напряжений при постоянной деформации (явление релаксации). Ползучесть и релаксация также как и пластические деформации, являются необратимыми, остаточными, но если пластичность пород характеризует их поведение при напряжениях, превышающих предел упругости, то ползучесть, представляющая собой медленное нарастание необратимых деформаций, проявляется и при напряжениях, меньших предела упругости, но при достаточно длительном воздействии нагрузок. Явление, обратное ползучести, называют релаксацией напряжений. При релаксации упругие деформации в породе с течением времени постепенно переходят в необратимые, но общая деформация во времени не изменяется. При этом происходит падение напряжений.

 

Деформационные свойства дисперсных грунтов.

Как известно, под действием давления грунт деформируется. Характер и величина деформации зависят от природы грунта, способа нагружения и граничных условий деформирования грунта. Деформационные свойства грунтов определяют следующие основные природные факторы: 1) структура и текстура; 2) состав и концентрация порового раствора; 3) химико-минералогический состав скелета грунта; 4) температура окружающей среды. Влияние тех или иных природных факторов на деформируемость грунтов зависит главным образом от структуры грунта, т.е. от дисперсности, плотности и расположения частиц в пространстве и связей между частицами. В зависимости от способа нагружения грунта различают деформации при статическом (ступенчатом), ударном и динамическом способах приложения давления. Наиболее часто деформационные свойства грунтов оснований сооружений определяют при статическом нагружении. В особых случаях деформационные свойства грунтов определяют при действии ударной нагрузки (трамбование, взрыв и т.п.), при вибрации, а также при воздействии гидростатического, главным образом отрицательного (капиллярного) давления, возникающего при водопонижении в дисперсных грунтах.

Деформационные свойства дисперсных грунтов определяются их сжимаемостью под нагрузкой, обусловленной смещением частиц относительно друг друга и соответственно уменьшением объема пор, вследствие деформации частиц породы, воды, газа. При определении сжимаемости грунтов различают показатели, характеризующие зависимость конечной деформации от нагрузки и изменение деформации грунта во времени при постоянной нагрузке. К первой характеристике показателей относятся коэффициент уплотнения, коэффициент компрессии, модуль осадки, ко второй – коэффициент консолидации.

Деформационные свойства грунтов определяют как в лабораторных условиях на образцах с нарушенными или ненарушенными структурными связями, так и в полевых условиях. Лабораторные испытания до настоящего времени являются основным методом изучения свойств грунтов, так как позволяют сравнительно просто передавать различные давления на грунт, исследовать поведение грунта в широких диапазонах изменения физического состояния и условий окружающей среды, моделировать сложные случаи работы грунта в основании или теле сооружений. Полевые методы испытания позволяют более правильно отразить влияние текстурных особенностей грунта на его деформируемость.

Для исследования сжимаемости грунтов в полевых условиях применяют прессиометр — прибор, основанный на обжатии и измерении деформации грунта, находящегося в стенках необсаженной скважины, и определении модуля сжимаемости.

К основным характеристикам прочностных свойств грунтов относятся: сопротивление сдвигу грунта по грунту и по поверхностям смерзания; сопротивление сжатию, растяжению; сцепление и угол внутреннего трения, эквивалентное сцепление.

 

Различают простое и сложное напряжённые состояния в грунте.

Простое напряжённое состояние соответствует проявлению одного из видов напряжений: сжатия, растяжения, сдвига. Напряжённое состояние в массиве грунта, соответствует сложному напряжённому состоянию, когда проявляются одновременно при различном сочетании все виды простых напряжённых состояний.

Они позволяют прогнозировать осадки сооружений, определять устойчивость пород в их основании, а при конструировании фундаментов предельно использовать несущие способность грунтов. Показателями, выражающие сопротивление пород сдвигу, дают возможность проектировать заложение откосов плотин, насыпей, дамб, бортов карьеров с минимальным объемом земляных работ, определять устойчивость склонов и оползней, определять рациональное сечение и устойчивость различных сооружений в т.ч. бетонных плотин. Сжимаемостью породы называют ее способность к уменьшению объема под воздействием нагрузки. При сжатии породы вертикальной нагрузкой в условиях свободного бокового расширения при одноосном сжатии относительной деформацией (е) называют отношение величины абсолютного уменьшения нагруженного образца (h) к его начальной высоте (h0) е=h/h0 Зависимость между напряжением () и величиной относительной деформации (е) при нагрузках меньше предела пропорциональности определяется выражением: =Ее (Е – модуль упругости).
Сопротивление сдвигу. Прочностные свойства пород определяются рядом показателей, относящихся к категории прямых расчетных показателей. Прочность пород характеризуется способностью сопротивляться сдвигающим усилиям (сопротивление к сдвигу). Сдвигом называется процесс деформации, и разрушения породы вследствие смещения одной ее части относительно другой. Сдвиг по данной площадке вызывается касательным напряжением к ней. Сопротивление сдвигу зависит от величины вертикальной нагрузки, приложенной к образцу. Прочность пород оценивается в основном по теории Мора, согласно которой разрушение тела происходит при определенном предельном соотношении нормальных и касательных напряжений.

Определение прочностных и деформационных характеристик выполняются как в лабораторных, так и в полевых условиях, при простом и сложном напряжённом состояниях. Основными видами испытаний являются: одноосное сжатие; разрыв; сдвиг; кручение; компрессия; осесимметричное трёхосное сжатие вертикальной и радиальной нагрузкой; осесимметричное трёхосное сжатие с кручением; осесимметричное сжатие полого цилиндра с кручением; трёхосное сжатие с независимым заданием всех трёх главных направлений; динамометрическое испытание в релаксационно-ползучем режиме.

Реол. св-ва грунтов. При инженерно-геологической оценке пород эти свойства имеют весьма важное значение. Однако роль каждого из них при этом неодинакова, что зависит от состава пород.1) Водоустойчивость. Определение водоустойчивости наиболее важно при оценке глинистых пород, которые под воздействием воды теряют связность и изменяют консистенцию или размокают и распадаются. Скорость и характер размокания характеризуют водоустойчивость. Некоторые разности глинистых пород при увлажнении сильно набухают, причем объем их увеличивается на 25-30%. Изменение свойств глинистых пород происходит не только при увлажнении. Высыхание влажных глинистых пород иногда сопровождается их растрескиванием, изменением монолитности, уменьшением объема (усадкой). Вода, воздействуя на породы, может также растворять, выщелачивать водорастворимые части и тем самым изменять их свойства. 2) Влагоемкость. Под влагоемкостью породы понимается ее способность в вмещать и удерживать определенное количество воды. В соответствии с этим различают породы: влагоемкие (глины, суглинки), среденевлагоемкие (скпеси, пески м/з,с/з, пылеватые) и невлагоемкие (пески с/з, к/з, гравий и т.д.). Применительно к породам невлагоемким следует говорить об их водоемкости. У влагоемких пород различают полную, капиллярную и молекулярную Влагоемкость. Полной влагоемкости полное насыщение породы водой, т.е. заполнение всех ее пор. Сравнивая естественную влажность породы с влажностью, соответствующей полной влагоемкости судят о степени ее водонасыщения. Капиллярной влагоемкости соответствует не полное насыщение породы водой, а такое, когда водой заполнены только капиллярные поры. Под молекулярной влагоемкостью понимается способность пород удерживать определенное количество физически связанной воды. Максимальное количество физически связанной воды, которое может удержать порода на поверхности своих частиц называется максимальной молекулярной влагоемкостью. Из песчаных пород насыщенных водой не вся вода может вытекать свободно, а только та часть, которая подчиняется силе тяжести. Способность песчаных и других обломочных пород, насыщенных водой, отдавать ее путем свободного стекания, характеризует их водоотдачу. Такой способностью обладают невлагоемкие породы. Водоотдача пород примерно равна разности между полной их влагоемкостью (Wп) и максимальной молекулярной: Wотд=Wп -W м Характеристика водоотдачи пород имеет важное значение при решении многих практических вопросов, например при проектировании дренажей, притоков воды в котлован и т.д. 3) Капиллярность. При значительном повышении влажности песчаных и особенно глинистых пород понижаются их строительные качества. Увлажнение воды может быть обусловлено инфильтрацией воды с поверхности земли или поступлением ее снизу из какого-либо водоносного горизонта под влиянием напора капиллярных сил. Капиллярные силы образуют капиллярную зону над уровнем грунтовых вод, в пределах которой наблюдается повышенное увлажнение или насыщение пород. При интенсивном испарении капиллярных вод происходит засоление почв, образование солончаков. Известно, что максимальная высота капиллярного поднятия в т/з и м/з песках может достигать 1,5-2,0 м, в глинистых породах 3-4 м. В грубозернистых породах она мала и практического значения не имеет. 4) Водопроницаемость. К числу основных водных свойств пород относится водопроницаемость, т.е. способность пропускать через себя воду под действием напора. Данные, характеризующие водопроницаемость рыхлых обломочных и глинистых пород, имеет широкое применение в практике для определения притоков в строительные котлованы, подземные выработки, способов осушения и т.д. Водопроницаемость песков, галечников и др. рыхлых отложений зависит от их пористости и скважности. Глинистые породы при небольших напорах очень слабопроницаемы, т.к. размер пор в них мал. Движение воды и других жидкостей через пористые среды (породы) называется фильтрацией. Следовательно, водопроницаемость песчаных и глинистых пород – это их фильтрационная способность. Мерой водопроводимости горных пород служит коэффициент фильтрации. В инженерно-геологической практике пользуются главным образом скоростным выражением коэффициента фильтрации, исходя из уравнения v=KфI(k). Если I=1, то v=Kф м/сут, см/сут.

В глинистых породах эффективная пористость всегда значительно меньше общей пористости и часто равна нулю, т.к. поровое пространство в значительной мере занято физически связной водой.

Релаксация. При нагружении постоянной силой F возникают деформации,
развивающиеся во времени . Для прекращения развития этих деформаций необходимо уменьшать силу по некоторому закону F(t).Уменьшение во времени напряжения, необходимого для поддержания постоянной деформации называется релаксацией(расслаблением) напряжений. С позиции статистической физики релаксацию можно рассматривать как процесс установления статистического равновесия в физической системе, когда микроскопические величины, характеризующие состояние системы (напряжения), асимптотически приближаются к своим равновесным значениям. Характеристикой явления расслабления напряжений является время релаксации, равное времени за которое напряжение уменьшается в e раз, которое характеризует продолжительность «осёдлой жизни» молекул, т. е. определяет подвижность материала. Время релаксации различно у разных тел. Для скальных грунтов время релаксации изменяется сотнями и тысячами лет, ДЛЯ стекла — ОКОЛО ста лет, а для воды — 10-11 с. Например, горные породы, формирующие земную кору, обладают временем релаксации измерямым тысячелетиями, у воздуха 10-10, у воды 10-11, у льда сотни секунд. Если продолжительность действия сил на грунт меньше периода релаксации , то будут развиваться в основном упругие деформации.

Таким образом, в пределах 100-1000 секунд лёд ведёт себя как упругое тело (например, хрупко разрушается при ударе в условия большой нагрузки). При уменьшении нагрузки лёд течёт как вязкая жидкость. Аналогичное поведение - хрупкое разрушение при быстром приложении нагрузки и вязкое течение при длительном воздействии нагрузки–отчётливо проявляется у мёрзлых грунтов.

Если же время действия силы на грунт превышает время релаксации, то в грунте возникают необратимые деформации ползучести и течения. Иными словами, в зависимости от отношения времени действия силы ко времени релаксации тело будет вести себя как твердое или как жидкое. Период релаксации является" основной константой, объединяющей свойства твердых и жидких тел. Величина времени релаксации может быть определена из отношения вязкости г| к модулю упругости (сдвига): Для твердообразных тел, к которым относятся дисперсные и скальные грунты, характерно наличие предельного напряжения сдвига Хк, называемого пределом текучести и совпадающего с пределом упругости.

 

Основные физико-химические свойства грунтов. К этим свойствам относятся свойства, которые проявляются в результате физико – химического взаимодействия между компонентами грунтов. К ним относятся коррозионные свойства грунтов, диффузионные, осмотические, адсорбционные, а также липкость, пластичность, набухание, размокание, усадка и другие свойства пород. Коррозионные свойства: коррозией называется процесс разрушения материалов в следствие их химических, электро – химических или био – химических взаимодействий с окружающей средой. Подземная коррозия выражается в разрушении строительных металлических материалов, сооружений и трубопроводов при их взаимодействии с грунтами. Основными причинами подземной коррозии являются: 1) воздействие грунтовой влаги на металлическую конструкцию; 2) явление электролиза. Эти явления возникают вокруг трубопровода, а также на участках, где используют трамвайное и железно – дорожное движение. Подобное разрушение возникает в грунтах, в результате воздействия блуждающих электрических токов на воду – солевой раствор в порах грунта, который в следствии такого взаимодействия станет агрессивным электролитом CISO4; 3) действия находящихся в грунтах микроорганизмов, вызывающие биокоррозию. В целом коррозия грунтов зависит от многих факторов. К основным относятся химический состав грунтов и в первую очередь состав и количество растворенных солей, а также влажность грунтов, содержание в них газов, структуры грунтов, их электропроводность и наличие бактерий. Диффузия (от лат. Diffusion - распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. Осмос (от греч. Osmos – толчок, давление), односторонний перенос растворителя через полупроницаемую перегородку (мембрану), отделяющую раствор от чистого растворителя или раствора меньшей концентрации. Диффузия и осмос ведет к перераспределению ионов вещества и молекул воды и наиболее вещественно проявляются в глинистых грунтах. Осмос в глинах может вызвать деформации набухания или усадки. Например, если поместить засоленный глинистый грунт в пресную воду, то произойдет осмотическое всасывание воды и как результат набухание грунта. На практике такое набухание может происходить в различных каналах, проложенных в засоленных грунтах после их затопления пресной водой. Если будет иметь место обратное соотношение концентраций, то есть раствор в грунтах будет более пресный, чем в канале, то произойдет осмотический отсос воды из грунтов в результате их усадки. Адсорбция грунтов называется их способность поглощать из проходящих растворов определенные частицы или элементы вещества. Существуют несколько видов адсорбций: механическая (задерживание частицы за счет конфигурации пор); физическая (за счет молекул взаимодействующих между частицами из раствора и поверхностных пор); химическая (за счет химических взаимодействий); биологическая (за счет действия растений и различных микроорганизмов). Отдельные виды адсорбции могут проявляться совместно (физико – химическая адсорбция).

Усадка грунта. Усадкой грунта называется уменьшение его объема в результате удаления воды при высыхании или под влиянием физико-химических процессов (осмос и др. ). В результате усадки грунт становится плотнее и после высыхания — даже твердым. Уплотнение глинистого грунта при усадке увеличивает его сопротивление деформациям, но наличие трещин, обычно сопровождающих усадку, повышает водопроницаемость и уменьшает устойчивость поверхностного слоя грунта в откосах. В условиях сухого и жаркого климата усадочные трещины разбивают массив глинистого грунта на глубину до 7—8 м и больше.В максимальной степени усадка проявляется в глинах; другим связным породам она свойственна меньше.

 

Липкость грунта проявляется при влажности, большей, чем Wm; наибольшего значения она достигает у глинистых грунтов. Липкость глин растет с увеличением внешнего давления и уменьшением влажности, ее максимальное значение в большинстве случаев достигается при максимальной молекулярной влагоемкости. Липкость грунта зависит от категорий воды, содержащейся в грунте, особенностей его химико-минеральной части, площади контакта грунта с предметом и др. Величина липкости глинистых грунтов при определенном соотношении их особенностей с внешними факторами может достигать 0,02—0,05 МПа. Поэтому липкость грунта является одним из факторов, определяющих условия работы ковшов, дорожных и почвообрабатывающих машин. Прилипание грунта к поверхности землеройных и транспортных машин и механизмов вызывает снижение их производительности при выполнении вскрышных работ на карьерах, при разработке котлованов и т.д.

Водопрочность — это способность грунтов сохранять механическую прочность и устойчивость при взаимодействии с водой. Взаимодействие пород с водой может быть статическим и динамическим: воздействие спокойной воды вызывает явления набухания и размокания, гидродинамическое воздействие — процесс размыва.

Размокаемость — это способность глинистых пород при впитывании воды терять связность и превращаться в рыхлую массу с частичной или полной потерей несущей способности. Интенсивность процесса размокания зависит от характера структурных связей, состава и состояния грунтов. Скорость и интенсивность размыва зависят как от характера водного воздействия, так и от реакции породы на данное воздействие — размываемости. Резкое изменение водопрочности (например, в результате выветривания) может привести к значительному снижению несущей способности грунтов оснований сооружений и к возникновению обвальных и оползневых явлений в бортах строительных котлованов и глубоких карьеров.

 

Размываемость чаще всего оценивается коэффициентом сопротивляемости горных пород размыву.

 

Пластичностью грунтов называется способность их изменять свою форму (деформироваться) без разрыва сплошности в результате внешнего воздействия и сохранять полученную при деформации новую форму после того, как внешнее воздействие прекращается. Пластичные свойства грунтов тесно связаны с влажностью и изменяются в зависимости от количества и качества находящейся в грунте воды. Переход глинистой породы из одной формы консистенции в другую совершается при определенных значениях влажности, которые получили название характерных влажностей или пределов. В инженерно-геологической практике наибольшее распространение получили верхний и нижний пределы пластичности. Пределы пластичности и число пластичности широко используются при классификации глинистых грунтов, определении расчетных сопротивлений грунтов и приблизительной оценке устойчивости грунтов в котлованах, выемках и т. д.

 

Набуханием грунта называется увеличение его объема при взаимодействии с водой. Набухание грунтов часто наблюдается при проходке котлованов и выемок и приводит к деформации крепи, полотна дорог, фундаментов и пр. Для определения набухания предложено несколько способов, которые могут быть объединены в пять групп, основанных на оценке набухания: 1) по теплоте набухания; 2) по давлению набухания; 3) по объему осадка, седиментированного в жидкости; 4) по количеству (объему или весу) воды, вызвавшей набухание; 5) по приросту объема грунта при набухании.

Наибольшее распространение в практике инженерно-геологических работ получил способ изучения набухания по приросту объема грунта в процессе насыщения его водой (в том виде, как он разработан А. М. Васильевым).