Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Б) Геотермическая ступень и геотермический градиент.

Тема 1: ТИПЫ И СТРОЕНИЕ ЗЕМНОЙ КОРЫ.

 
 


Земная кора — верхняя часть литосферы. В масштабах всего земного шара её можно сравнить с тончайшей плёнкой — столь незначительна её мощность. Но даже эту самую верхнюю оболочку планеты мы знаем не очень хорошо. Как же можно узнать о строении земной коры, если даже самые глубокие скважины, пробуренные в коре, не выходят за первый десяток километров? На, помощь учёным приходит сейсмолокация. Расшифровывая скорость прохождения сейсмических волн через разные среды, можно получить данные о плотности земных слоёв, сделать вывод об их составе. Под континентами и океаническими впадинами строение земной коры различно.

 

А) Океаническая кора

Океаническая земная кора более тонкая (5—7 км), чем континентальная, и состоит из двух слоёв — нижнего базальтового и верхнего осадочного. Ниже базальтового слоя находится поверхность Мохо и верхняя мантия. Рельеф дна океанов очень сложен. Среди разнообразных форм рельефа особенно выделяются огромные срединно-океанические хребты. В этих местах происходит зарождение молодой базальтовой океанической коры из вещества мантии. Через глубинный разлом, проходящий вдоль вершин по центру хребта — рифт, магма выходит на поверхность, растекаясь в разные стороны в виде лавовых подводных потоков, постоянно раздвигая в разные стороны стенки рифтового ущелья. Этот процесс называется спредингом.

 

Срединно-океанические хребты возвышаются над дном океанов на несколько километров, а их протяженность достигает 80 тыс. км. Хребты рассекаются параллельными поперечными разломами. Их называют трансформными. Рифтовые зоны — самые неспокойные сейсмические зоны Земли. Базальтовый слой перекрывают толщи морских осадочных отложений — илов, глин разного состава.

 

Б) Континентальная кора.

Континентальная земная кора занимает меньшую площадь (около 40% поверхности Земли - прим. от geoglobus.ru), но имеет более сложное строение и гораздо большую мощность. Под высокими горами её толщина измеряется 60—70 километрами. Строение коры континентального типа трёхчленное — базальтовый, гранитный и осадочный слои. Гранитный слой выходит на поверхность на участках, именуемых щитами. Например, Балтийский щит, часть которого занимает Кольский полуостров, сложен породами гранитного состава. Именно здесь велось глубокое бурение, и Кольская сверхглубокая скважина достигла отметки 12 км. Но попытки пробурить весь гранитный слой насквозь оказались неудачными.

Шельф — подводная окраина материка — также имеет континентальную кору. То же относится и к крупным островам — Новой Зеландии, островам Калимантан, Сулавеси, Новая Гвинея, Гренландия, Сахалин, Мадагаскар и другим. Окраинные моря и внутренние моря, такие как Средиземное, Чёрное, Азовское, расположены на коре континентального типа.

 

Говорить о базальтовом и гранитном слоях континентальной коры можно лишь условно. Имеется в виду, что скорость прохождения сейсмических волн в этих слоях сходна со скоростью прохождения их в породах базальтового и гранитного состава. Граница гранитного и базальтового слоев выделяется не очень чётко и изменяется по глубине. Базальтовый слой граничит с поверхностью Мохо. Верхний осадочный слой меняет свою толщину в зависимости от рельефа поверхности. Так, в горных районах он тонкий или вообще отсутствует, так как внешние силы Земли перемещают рыхлый материал вниз по склонам - прим. от geoglobus.ru. Зато в предгорьях, на равнинах, в котловинах и впадинах он достигает значительных мощностей. Например, в Прикаспийской низменности, которая испытывает погружение, осадочный слой достигает 22 км

 

 
 

 


Тема 2: ТЕМПЕРАТУРА В НЕДРАХ ЗЕМЛИ.

А) Изменение температуры с глубиной, причины ее изменения:
Тепловой режим Земли складывается из двух видов: внешней теплоты, получаемой в виде солнечной радиации, и внутренней, зарождающейся в недрах планеты. Солнце дает Земле огромное количество тепловой энергии. Разные участки земного шара получают неодинаковое количество тепловой энергии: области расположенные вблизи экватора и тропиков - больше, а области умеренных широт и полярные области - меньше. Солнечная энергия обычно проникает вглубь земной коры на глубину 10-12 км. С глубиной в недрах Земли увеличивается роль внутренней энергии. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры. Она зависит от состава вмещающих пород, деятельности теплых источников и теплоты поступающей из недр Земли.

 

Б) Геотермическая ступень и геотермический градиент.

 

ГЕОТЕРМИЧЕСКАЯ СТУПЕНЬ-увеличение глубины в земной коре (в метрах), соответствующее повышению темп-ры горных пород на 1ОС. В среднем Г. с. равна 30-40 л; в кристаллич. породах в неск. раз больше (до 120-200 м), чем в осадочных. Колеблется в значит, пределах в зависимости от глубины и места (от 5 до 150 м). Для Москвы средняя величина Г. с. равна 38,4 м. Измерение прироста темп-ры горных пород с увеличением глубин их залегания устанавливается геотермическим градиентом.

ГЕОТЕРМИЧЕСКИЙ ГРАДИЕНТ, величина, на которую повышается температура горных пород с увеличением глубин залегания на каждые 100 м. В среднем для глубин коры, доступных непосредственным температурным измерениям, величина Г. г. принимается равной приблизительно 3°С. Г. г. меняется от места к месту в зависимости от форм земной поверхности, теплопроводности горных пород, циркуляции подземных вод, близости вулканических очагов, различных химических реакций, происходящих в земной коре. Закономерный рост температуры с увеличением глубины указывает на существование теплового потока из недр Земли к поверхности. Величина этого потока равна произведению Г. г. на коэффициент теплопроводности.

Пояс постоянной температуры в Москве располагается на глубине 20 м (4,2 °С), в Париже в течение 100 лет на глубине 28 м отмечается температура 11,83 °С. Глубже этого пояса, в направлении от поверхности Земли к центру, температура постепенно повышается: в среднем на каждые 33 м на 1 °С. Это так называемая геотермическая ступень. Величина геотермической ступени в

разных местах и на разных глубинах неодинакова и колеблется от 5 до 150 м. В вулканических районах с глубиной температура повышается очень быстро.

 

Прирост температуры на каждые 100 м углубления от зоны постоянной температуры называется геотермическим градиентом. Он также в разных местах и на разных глубинах имеет неодинаковую величину. С глубиной в среднем на каждые 100 м температура увеличивается на 3 °С.

Наибольший геотермический градиент — 150 ° С/км наблюдался в Бонанце, США, штат Орагон, наименьший градиент — 6 0 С/км — в Витватерсранде, Южная Африка. Различия в величине геотермической ступени и геотермического градиента обусловлены разной радиоактивностью и теплопроводностью горных пород, различными условиями залегания горных пород (температура выше в слоях, собранных в складки недавно), гидрохимическими процессами (в зависимости от того, какие реакции преобладают: с выделением тепла или с поглощением), температурой подземных вод, циркулирующих в толще пород.

 

 

Тема 3: МИНЕРАЛЫ.

А) Минерал (фр. minéral, от позднелат. minera — руда) — природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами. Является составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия. В настоящее время установлено около 3500 минеральных видов. Однако лишь несколько десятков минералов (около 70) пользуются широким распространением. Они входят в состав горных пород и называются породообразующими.

 

Б) Классификация минералов по химическому составу:

 

Приводим краткую характеристику основных классов минералов.

Силикаты (полевые шпаты, слюды, пироксены, хлориты и др.). Наиболее многочисленный класс (до 800 минералов), слагающий по массе более 90% всей земной коры. В основе строения всех силикатов — кремнекислородный тетраэдр [SiO4]4. Силикаты являются породообразующими минералами для большинства магматических и метаморфических горных пород. Самыми распространенными среди силикатов являются полевые шпаты, которые подразделяются на калиево-натриевые (ортоклаз) и известково-натриевые, или плагиоклазы (альбит, Лабрадор, анортит).

В составе силикатов большое практическое значение имеет группа глинистых минералов — каолинит, гидрослюда и особенно монтмориллонит. Эти минералы во многом определяют инженерно геологические особенности глинистых пород и отличаются весьма высокой дисперсностью (< 1 мкм).

 

Карбонаты (кальцит — СаСОэ, доломит — СаМg(С03)2, сидерит — FеС03 и др.)- В класс карбонатов входит до 80 минералов, наиболее известен среди них кальцит, входящий в состав таких горных пород, как известняк и мрамор. Карбонаты растворяются в воде и вызывают развитие опасных геологических процессов.

 

Оксиды и гидроксиды (кварц и халцедон — SiO2, опал — SiO2• nН20, лимонит — Fe2Оэ • nН20 и др.). Наиболее распространенным и весьма устойчивым минералом среди них является кварц, входящий в состав почти всех горных пород.

 

Сульфиды (пирит FеS2, галенит РbS, сфалерит ZnS и др.) в химическом отношении представляют собой соединения различных элементов с серой. Наиболее распространен среди них пирит, отрицательно влияющий на качество природных строительных материалов. Всего в классе сульфидов насчитывается до 200 минералов.

Сульфаты (гипс СаS04 • 2Н20, ангидрит СаS04, барит ВаS04 и др.) — соли серной кислоты, типичные минералы осадочных горных пород. Представители этого класса насчитывают до 260 минералов. Их характерная особенность — растворимость в воде, что является причиной развития (как и в карбонатах) опасного геологического процесса — карста.

Галоиды (галит — NаС1, сильвин — КС1, флюорит — СаF2 и др.) — соли галоидно-водородных кислот. Многие из них растворимы в воде и придают ей повышенную минерализацию.

Фосфаты (апатит — Са5(F, С1) (Р04)3 и др.) представлены большим количеством минералов (до 300), однако содержание их в земной коре не превышает 1 %.

Вольфраматы (вольфрамит — (FеМn)>WO4 и др.) не имеют породообразующего значения и в горных породах встречаются крайне редко. Многие сплавы вольфраматов обладают очень высокой твердостью, например победит, широко используемый при бурении скважин.

Самородные элементы (алмаз — С, сера — S, золото — Аu и др.). В этот класс входит около 50 минералов. Встречаются они редко, и в земной коре их масса не превышает 0,1%.

Для общей характеристики состава минералов, входящих в состав горных пород, в инженерно-геологической практике их изучают с помощью шлифов — тончайших прозрачных пластинок горных пород толщиной 0,03 мм. Для просмотра шлифов используют поляризационный микроскоп. Высокодисперсные глинистые минералы (монтмориллонит и др.), имеющие важное значение при инженерно-геологической оценке горных пород, изучают с помощью электронной микроскопии:, термического анализа, рентгенографии и других методов.