Подведение под знак дифференциала.

ЛЕКЦИЯ № 1.

ГЛАВА 1. ИНТЕГРАЛЫ.

Определения и основные методы.

Определение. Если , то называется первообразной от функции .

Свойство.Если первообразная, то (для любого ) тоже является первообразной для той же самой функции .

Это легко доказать, действительно, = = .

Таким образом, первообразных бесконечно много, то есть, если поднять или опустить на любую высоту график , снова будет первообразная.

Определение. Множество всех первообразных от одной и той же функции называется неопределённым интегралом этой функции.

Обозначение: .

Свойство.Если и две различные первообразные функции , то .

Доказывается так: , то есть .

Свойства линейности.

1.

2.

 

Таблица основных интегралов.

( )

;

 

Объяснение причины возникновения модуля в . Функция существует только на правой полуоси, тогда как имеет две ветви, на правой и левой полуоси. Получалось бы противоречие, что производная от несуществующей функции есть на левой полуоси. Функция является чётным продолжением на левую полуось, и именно она там является первообразной для при .

Методы интегрирования.

 

Преобразования подынтегральных выражений.

Различные преобразования, например, арифметические (домножить и поделить, прибавить и отнять), выделение полного квадрата, разбиение многочлена на множители, преобразования по тригонометрическим формулам, и т.д. нередко помогают упростить исходное выражение, разбить его на несколько более простых слагаемых, которые уже сводятся к интегралам табличного типа. На практике рассмотрены разнообразные примеры на виды этих преобразований. Рассмотрим один пример.

Пример. Вычислить .

Решение. Применим формулу понижения степени.

= = =

= .

 

Замена переменной.

Бывают такие случаи, когда функция имеет вид , то есть явно видно, что всё выражение зависит от какого-то однотипного блока, например всё выражается через или . Делается замена на , только нужно не забыть пересчитать , потому что , если только замена не является простым линейным сдвигом .

Пример. Вычислить .

Решение. Сделаем замену , тогда , , .

= = = .

Обратная замена: = = .

Более того, область определения исходной функции из-за наличия в ней квадратного корня, точка 0 не входит в область определения, так как корень там и в знаменателе, так что знак модуля в ответе является излишним, ответ можно записать так: .

 

 

Если в функции присутствуют корни разного порядка, например и , то замена должна происходить через корень порядка НОК (наименьшее общее кратное). Причина в том, что именно при этом все корни переводятся в целые степени от .

Если , тогда: , .

Почему все корни выразятся через целые степени от , видно здесь:

= ,

= .

 

Подведение под знак дифференциала.

Если интеграл имеет вид , то есть в функции присутствует какой-то множитель, который достаточно легко подлежит интегрированию, а в остальном множителе есть явная зависимость от его первообразной, то это значит, что подынтегральная функция есть производная от композиции . Тогда можно объединить и назвать , и далее можно будет повсеместно заменить на . Рассмотрим, как это действует, на примерах.

Пример. Вычислить .

Решение. = , фактически здесь уже подготовлена замена , более того, дифференциал пересчитывать не нужно, потому что под дифференциалом и так сформировано то же самое, что будет называться . То есть, это частный случай замены переменных, только более простой.

Итак, вид интеграла получается = .

Сделаем обратную замену, и вот ответ: .

Проверка: = = , то есть именно исходную подынтегральную функцию мы и получили.

 

Интегрирование по частям.

Существует более общий метод, чем подведение под знак дифференциала. Иногда вовсе не требуется, чтобы первообразная от того множителя, который подводится под dx, была как-то связана с остальной частью функции. Запишите формулу:

Такой короткий вид легче выучить наизусть, а теперь запишем более подробно, чтобы понять смысл.

.

Если есть два множителя, и один из них интегрируется довольно легко (он обозначен ) то можно перейти к интегралу, в котором наоборот, понижено до производной, а повышено до первообразной. Иногда именно это помогает упростить дальнейшие вычисления.

 

Доказательство формулы.

Вспомним, что по правилу дифференцирования произведения, которое мы доказывали в прошлом семестре: = .

Тогда = .

Тогда и неопределённые интегралы от этих двух функций совпадают:

= .

Но первообразная от производной, это сама функция и есть, т.е.

.

Поэтому

= .

Пример.

Решение. Если обозначить , , то при переходе к степенной понизится степень, в данном случае она вообще перейдёт в 1. А вот для второго множителя переходим к первообразной, но там не усложняется, остаётся точно так же как и было, . Поэтому на следующем шаге интеграл содержит вообще не два множителя, а один!

Составим таблицу:

= , тогда получаем ответ: .

 

Пример.Вычислить интеграл: Составим таблицу:

После применения формулы, останется интеграл, в котором всего лишь один множитель, а не два, потому что переходит в 1, и один из множителей исчезает.

= = .

 

А есть такие случаи, когда функция состоит не из 2 множителей, а всего из одного, но мы ведь всё равно можем считать, что второй множитель есть, только он равен 1.

Пример. .

Здесь производная от подынтегральной функции устроена лучше и проще, чем сама функция, но правда, пришлось допустить некоторое незначительное усложнение типа функции при переходе от к .

= = = .