Частные формы закона сохранения энергии

Классическая механика

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может исчезнуть никуда.

Примеры

Классическим примером этого утверждения являются пружинный или математический маятники с пренебрежимо малым затуханием. В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно[3]. В случае математического маятника[4] аналогично ведёт себя потенциальная энергия груза в поле силы тяжести.

Термодинамика

Изменение внутренней энергии термодинамической системы при переходе её из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход

или альтернативно:

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

В математической формулировке это может быть выражено следующим образом:

,

где введены обозначения Q — количество теплоты, полученное системой, U — изменение внутренней энергии системы, A — работа, совершённая системой.

Закон сохранения энергии, в частности, утверждает, что не существует вечных двигателей первого рода, то есть невозможны такие процессы, единственным результатом которых было бы производство работы без каких-либо изменений в других телах[6].

Гидродинамика

В гидродинамике идеальной жидкости закон сохранения энергии традиционно формулируется в виде уравнения Бернулли: вдоль линий тока остаётся постоянной сумма[7]

Здесь введены следующие обозначения: — скорость потока жидкости, — тепловая функция жидкости, — ускорение свободного падения, — координата точки в направлении силы тяжести. Если внутренняя энергия жидкости не меняется (жидкость не нагревается и не охлаждается), то уравнение Бернулли может быть переписано в виде[8]

где — давление жидкости, — плотность жидкости. Для несжимаемой жидкости плотность является постоянной величиной, поэтому в последнем уравнении может быть выполнено интегрирование[8]:

Электродинамика

Изменение электромагнитной энергии, заключённой в неком объёме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объём, и количеству тепловой энергии, выделившейся в данном объёме, взятой с обратным знаком.

Математически это выражается в виде (здесь и ниже в разделе использована Гауссова система единиц)

где V — некий объём, — поверхность, ограничивающая этот объём,

— плотность электромагнитной энергии,

— вектор Пойнтинга,

— плотность тока, — напряжённость электрического поля, — индукция электрического поля, — напряжённость магнитного поля, — индукция магнитного поля.

Этот же закон математически может быть записан в дифференциальной форме:

Нелинейная оптика

В нелинейной оптике рассматривается распространение оптического (и вообще электромагнитного) излучения в среде с учётом многоквантового взаимодействия этого излучения с веществом среды. В частности, широкий круг исследований посвящён задачам так называемых трёх- и четырёхволновоого взаимодействий, в которых происходит взаимодействие соответственно трёх или четырёх квантов излучения. Поскольку каждый отдельный акт такого взаимодействия подчиняется законам сохранения энергии и импульса, существует возможность сформулировать достаточно общие соотношения между макроскопическими параметрами взаимодействующих волн. Эти соотношения носят название соотношений Мэнли — Роу.

В качестве примера рассмотрим явление сложения частот света: генерацию в нелинейной среде излучения с частотой 3, равной сумме частот двух других волн 1 и 2. Этот процесс является частным случаем трёхволновых процессов: при взаимодействии двух квантов исходных волн с веществом они поглощаются с испусканием третьего кванта. Согласно закону сохранения энергии, сумма энергий двух исходных квантов должна быть равна энергии нового кванта:

Из этого равенства непосредственно следует одно из соотношений Мэнли — Роу:

1 + 2 = 3,

которое, собственно, и выражает тот факт, что частота генерируемого излучения равна сумме частот двух исходных волн.

Релятивистская механика

В релятивистской механике вводится понятие 4-вектора энергии-импульса (или просто четырёхимпульса)[12]. Его введение позволяет записать законы сохранения канонического импульса и энергии в единой форме, которая к тому же является лоренц-ковариантной, то есть не меняется при переходе из одной инерциальной системы отсчёта в другую. Например, при движении заряженной материальной точки в электромагнитном поле ковариантная форма закона сохранения имеет вид

,

где — канонический четырёхимпульс частицы, — четырёхимпульс частицы, — энергия частицы, — четырёхвектор потенциала электромагнитного поля , — электрический заряд и масса частицы, — собственное время частицы.

Также важным является тот факт, что даже при невыполнении закона сохранения энергии-импульса (например, в открытой системе) сохраняется модуль этого 4-вектора, с точностью до размерного множителя имеющий смысл энергии покоя частицы[12]:

Квантовая механика

В квантовой механике также возможно формулирование закона сохранения энергии для изолированной системы. Так, в шредингеровском представлении при отсутствии внешних переменных полей гамильтониан системы не зависит от времени и можно показать[13], что волновая функция, отвечающая решению уравнения Шредингера, может быть представлена в виде:

Здесь — волновая функция системы, — совокупность переменных, от которых зависит состояние системы в данном представлении, — собственные функции и собственные значения оператора Гамильтона, — постоянная Планка, — некоторые постоянные комплексные коэффициенты, характеризующие состояние системы. По определению средней энергией квантовой системы, описываемой волновой функцией, называется интеграл

где — гамильтониан системы. Несложно видеть, что этот интеграл не зависит от времени:

где также использовано свойство ортонормированности собственных функций гамильтониана[14]. Таким образом, энергия замкнутой системы сохраняется.

Следует, однако, отметить, что по сравнению с классической механикой у квантового закона сохранения энергии имеется одно существенное отличие. Дело в том, что для экспериментальной проверки выполнения закона необходимо провести измерение, представляющее собой взаимодействие исследуемой системы с неким прибором. В процессе измерения система, вообще говоря, более не является изолированной и её энергия может не сохраняться (происходит обмен энергией с прибором). В рамках классической физики, однако, это влияние прибора всегда может быть сделано сколь угодно малым, в то время как в квантовой механике имеются фундаментальные ограничения на то, насколько малым может быть возмущение системы в процессе измерения. Это приводит к так называемому принципу неопределённости Гейзенберга, который в математической формулировке может быть выражен в следующем виде:

,

где E имеет смысл среднеквадратичного отклонения измеренного значения энергии от среднего значения при проведении серии измерений, t — продолжительность взаимодействия системы с прибором в каждом из измерений.

В связи с наличием этого фундаментального ограничения на точность измерений в квантовой механике часто говорят о законе сохранения средней энергии (в смысле среднего значения энергии, полученного в результате серии измерений).

6. Импульс тела. Закон сохранения импульса.

Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость: р = mv. Направление вектора импульса р совпадает с направлением вектора скорости тела 0. Единица измерения импульса — кг • м/с.

Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае p1 = р2, где pl — начальный импульс системы, а р2 — конечный. В случае двух тел, входящих в систему, это выражение имеет вид m1v1 + m2v2 = m1"v1" + m2"v2" , где ml и m2 — массы тел, а v1 и v2 — скорости до взаимодействия, v1" и v2" — скорости после взаимодействия (рис. 5).

Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Однако если в системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Закон сохранения импульса(Закон сохранения количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

 

7. Момент импульса. Закон сохранения момента импульса.

Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно - если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.

Момент импульса замкнутой системы сохраняется.

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

8. Момент силы. Основной закон механики вращательного движения.

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Законы динамики вращательного движения

 

а) Закон инерции-торможения вращения

Используя принцип аналогий, с учетом первого закона ИМ (инерции-торможения) покажем закон инерции –торможения вращения для вращающихся систем

М ин - Мторм = d L / dt , (10)

где М ин - момента инерции вращения, М торм – момент торможения при вращении.

Из (10) вытекает самое главное свойство Инерции вращающейся материи.

Скорость изменения момента импульса вращения L вращающегося м.т. в инерциальном вращении равна действию на него разности моментов инерции Мин и момента торможения Мторм.

Вращение по инерции будет происходить с торможением, так как на вращающееся тело действует полевая материя, которая будет тормозить вращение до момента начала действия периодического внешнего момента сил.

б) Закон инертного ускорения вращения

Используя принцип аналогий, с учетом 2-го закона ИМ (инертности ускорения) покажем закон инертного ускорения вращения для вращающихся систем

Муск – Минт = dL/dt (11)

Скорость изменения момента импульса вращения L вращающегося м.т. в ускоренном вращении равна действию на него разности моментов ускорения Муск и инертного момента Минт .

в) Закон противодействия моментов сил при вращении

Используя принцип аналогий, с учетом третьего закона противодействия ИМ, покажем в виде закона противодействия моментов сил при вращении м.т.

Мвн = - k L w , (12)

где Мвн - внешний момент действующих сил на вращающуюся систему типа (НС+СП), Мпрот - внутренний момент противодействия вращению равный k Lw, где k-коэффициент противодействия вращению.

Если на вращающееся м.т. 1 со стороны другого м.т. 2 действует момент вращения, то в первом теле возникает момент вращения противоположный по направлению моменту вращения м.т. 2 и пропорциональный ему по величине.

9. Определение периода колебаний математического маятника. Гармонические колебания.

Математический маятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит[1] от амплитуды и массы маятника.

Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Гармонические колебания

Маятник, совершающий малые колебания, движется по синусоиде. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимых константы:

где A — амплитуда колебаний маятника, 0 — начальная фаза колебаний, — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями

10. Определение периода колебаний физического маятника.

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Период колебаний физического маятника не зависит ни, от фазы, ни от амплитуды колебания. Это утверждение справедливо для колебаний, подчиняющихся уравнению: .

Движение маятника описывается этим уравнением приближенно - в той мере, в какой справедлива использованная при выводе формула sin(j) » j.

11. Основное уравнение МКТ. Уравнение Менделеева-Клайперона.

Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Основными доказательствами этих положений считались:

Диффузия

Броуновское движение

Изменение агрегатных состояний вещества

Основное уравнение МКТ

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Уравнение Клайперона-Менделеева.

Уравнение Клайперона-Менделеева - уравнение Клайперона для одного моля идеального газа: p * V = R * T, где:

- R -универсальная газовая постоянная.

Из уравнения Клайперона-Менделеева вытекают законы Авогадро, Бойля-Мариотта, Шарля и Гей-Люссака.

12. I начало термодинамики. Изопроцессы.

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Существует несколько эквивалентных формулировок первого начала термодинамики

В любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля (1842 г.).

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется.

Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщённому системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале, и работы A'[3], совершённой над системой внешними силами и полями, за вычетом работы A, совершённой самой системой против внешних сил

U = Q A + N + A'.

Для элементарного количества теплоты Q, элементарной работы A и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:

dU = Q A + dN + A'.

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что dU и dN являются полными дифференциалами, а A и Q — нет.

Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём или температура — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

Изобарный процесс (др.-греч. , isos — «одинаковый» + , baros — «вес») — процесс изменения состояния термодинамической системы при постоянном давлении (P = const)

Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака: При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

Изохорный процесс (от греч. хора — занимаемое место) — процесс изменения состояния термодинамической системы при постоянном обьеме (V = const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объеме, давление прямо пропорционально температуре:

Линия, изображающая изохорный процесс на диаграмме, называется изохорой.

ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* *R*T/2=3*V*P, где R — универсальная газовая постоянная, количество молей в газе, T температура в Кельвинах, V объём газа, P приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание

Изотермический процесс (от греч. «термос» — тёплый, горячий) — процесс изменения состояния термодинамической системы при постоянной температуре (T = const)(PV = const). Изотермический процесс описывается законом Бойля — Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

Изоэнтропийный процесс — процесс изменения состояния термодинамической системы при постоянной энтропии (S = const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

pV = const

где — показатель адиабаты, определяемый типом газа.

14. Уравнение адиабаты. Адиабатический процесс. Коэффициент Пуассона.

Уравнение адиабаты для идеального газа: P · V = const, где P — давление газа, V — его объём, = cP / cV — соотношение его изобарической и изохорической теплоёмкостей (всегда больше 1). Отсюда следует изменение температуры при адиабатических процессах: T1 / T2 = (P1 / P2) · (V1 / V2), причём зависит от температуры, и в случае сильного изменения объёма и давления (раз в 10 и более) это может быть существенным. Применимо для относительно медленных процессов, когда температуры газа и ограничивающего газ слоя стенок успевают уравниваться, но теплообмен с внешней средой очень мал.

Адиабатический процесс - процесс, происходящий в изолированной системе, когда нет теплообмена с окружающей средой.

Коэффициент Пуассона (обозначается как или ) характеризует упругие свойства материала. При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

 

15. Работа газа в изопроцессах.

При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при Vi 0:

В изохорном процессе (V = const) газ работы не совершает, A = 0.

В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением:

A = p (V2V1) = pV.

В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, U = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками, а процессы расширения или сжатия газа в таких сосудах называются адиабатическими.

Работа газа в адиабатическом процессе выражается через температуры T1 и T2 начального и конечного состояний:

A = CV (T2T1).

 

16. Статический вес. Энтропия. III начало термодинамики.

Статистический вес, в квантовой механике и квантовой статистике — число различных квантовых состояний с данной энергией, то есть кратность состояния. Если энергия принимает непрерывный ряд значений, под Статистический вес понимают число состояний в данном интервале энергий. В классической статистике Статистический вес называют величину элемента фазового объёма системы.

Энтропия (от греч. — поворот, превращение) в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния.

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

,

где dS — приращение энтропии; Q — минимальная теплота, подведенная к системе; T — абсолютная температура процесса.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

или

где x — любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

,

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно третьему началу термодинамики, при значение .

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю: . Отсюда S0 = 0, что даёт возможность определять абсолютное значения энтропии и другихтермодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы S = kln W. При абсолютном нуле температуры система находится в основном квантово-механическом состоянии. Если оно невырожденно, то W = 1 (состояние реализуется единственным микрораспределением) и энтропия S при равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем могут стать существенными дискретность квантовых уровней макроскопической системы и влияние квантового вырождения.

17. Процессы переноса. Диффузия. Теплопроводность. Внутреннее трение.

Если систему вывести из равновесия и предоставить самой себе, то она постепенно вернется в равновесное состояние. При этом в системе будут протекать необратимые процессы, называемые процессами переноса. Различают несколько процессов переноса в зависимости от того, какие параметры системы были выведены из равновесия. Это — процессы переноса энергии, плотности и импульса, и связанные с ними явления теплопроводности, диффузии и вязкости. Процессы переноса возникают, когда имеется градиент какого-либо параметра макросистемы по всему объему макросистемы. При этом возникают потоки параметра в сторону уменьшения параметра.

Установление равновесия термодинамических систем происходит при помощи движения молекул. Это позволяет получить общее уравнение для всех явлений переноса.

Диффузия лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации)

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

Теплопроводность — это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Трение — процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении твёрдого тела в газообразной или жидкой среде. По-другому называется фрикционным взаимодействием (англ. friction).

Внутреннее трение

в газах и жидкостях; то же, что Вязкость.

Внутреннее трение

в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механическую энергию, сообщенную телу в процессе его деформирования. Внутреннее трение связано с двумя различными группами явлений — неупругостью и пластической деформацией.

18. Напряженность и потенциал электростатического поля. Принцип суперпозиции.

Напряжённость электрического поля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:

.

Также иногда называется силовой характеристикой электрического поля.

Математически зависимость вектора от координат пространства сама задаёт векторное поле.

Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).

Принцип суперпозиции — один из самых общих законов во многих разделах физики.