Математическое моделирование биологических процессов. Биофизика сложных систем.

Функционирование сложной биологической системы, в том числе сердечно-сосудистой системы, является результатом взаимодействия составляющих ее элементов и протекающих в ней процессов. Следует иметь в виду, что согласно общему принципу восходящей иерархии типов движения (механическое – физическое – химическое – биологическое – социальное), биологическая форма движения не может быть полностью сведена к механической, физической или химической форме движения, а биологические системы не могут быть полностью описаны с позиций какой-либо одной из этих форм движения. Эти формы движения могут служить моделями биологической формы движения, то есть ее упрощенными образами.

Выяснить основные принципы регулирования процессов сложной биологической системы можно с помощью построения сначала механической, физической или химической модели системы, а затем построения их математических моделей, то есть отыскания описывающих эти модели математических функций, в том числе уравнений (создания математических моделей). Чем ниже уровень иерархии – тем проще модель, тем больше факторов реальной системы исключаются из рассмотрения.

Моделирование – это метод, при котором производится замена изучения некоторого сложного объекта (процесса, явления) исследованием его упрощенного аналога - модели. В биофизике, биологии и медицине широко применяются физические, химические, биологические и математические модели. Например, течение крови по сосудам моделируется движением жидкости по трубам (физическая модель). Биологическая модель – это простые биологические объекты, удобные для экспериментального исследования, на которых изучают свойства реальных более сложных биологических систем. Например, закономерности возникновения и распространения потенциала действия по нервному волокну были изучены на биологической модели – гигантском аксоне кальмара.

Математическая модель – это совокупность математических объектов и отношений между ними, отражающая интересующие исследователя свойства и характеристики реального объекта. Адекватную математическую модель можно построить только с привлечением конкретных данных и представлений о механизмах сложных процессов. После построения математическая модель «живет» по своим внутренним законам, познание которых позволяет выявить характерные черты исследуемой системы (см. схему на рис. 1.1.). Результаты моделирования составляют основу управления процессами любой природы.

Биологические системы, по сути, являются чрезвычайно сложными структурно-функциональными единицами.

Чаще всего математические модели биологических процессов задаются в виде дифференциальных или разностных уравнений, но возможны и другие типы представлений модели. После того как модель построена, задача сводится к изучению ее свойств методами математической дедукции или путем машинного моделирования.

При изучении сложного явления обычно предлагают несколько альтернативных моделей. Проверяют качественное соответствие этих моделей объекту. Например, устанавливают наличие устойчивых стационарных состояний в модели, существование колебательных режимов. Модель, наилучшим образом соответствующую исследуемой системе, выбирают в качестве основной. Выбранную модель уточняют применительно к конкретной исследуемой системе. Задают числовые значения параметров по экспериментальным данным.

Процесс поиска математической модели сложного явления можно разделить на этапы, последовательность и взаимосвязь которых отражает схема ни рис. 1.2.

Этап 1 соответствует сбору имеющихся к началу исследования данных об изучаемом объекте.

На этапе 2 осуществляется выбор базовой модели (системы уравнений) из возможных альтернативных моделей по качественным признакам.

На этапе 3 производится идентификация параметров модели по экспериментальным данным.

На этапе 4 осуществляется проверка поведения модели на независимых экспериментальных данных. Для этого часто приходится ставить дополнительные эксперименты.

Если взятые для верификации модели экспериментальные данные «не вписываются» в модель, требуется проанализировать ситуацию и выдвинуть иные модели, исследовать свойства этих новых моделей, а затем поставить эксперименты, позволяющие сделать вывод о предпочтительности одной из них (этап 5).

Этап построения математической модели (этап 2, рис. 1.2) является наиболее важным этапом в математическом моделировании. Представления о механизмах и законах, которые действуют в системе и которые закладываются в математическую модель, определяют рамки результатов моделирования. Так, при моделировании функционирования сердечно-сосудистой системы на основе представлений о работе сердца с позиций механики можем построить механико-математическую модель.

Когда речь идет о математическом моделировании динамики сложной биологической системы, основанном на физических законах, мы вторгаемся в область математической биофизики сложных систем. Именно на стыке трех наук: математики, физики и биологии в последние пять десятилетий произошел качественный скачок в математическом описании поведения любой системы (физической, биологической, экономической).

Обычно принято измерять физиологические величины как функции времени. Для характеристики таких временных зависимостей существуют четыре основных математических понятия: стационарные состояния, колебания, хаос и шум. Стационарное состояние в математике может быть связано с понятием гомеостаза в физиологии, например, среднее артериальное давление поддерживается постоянным у человека. При физической нагрузке давление повышается, а после прекращения физической нагрузки давление в течение нескольких минут возвращается до стационарного уровня. Примерами колебательных процессов в организме человека могут служить: ритмы сердцебиения, дыхания и размножения клеток, циклы сна и бодрствования, секреции инсулина, перистальтические волны в кишечнике и мочеточнике, электрическая активность коры головного мозга и автономной нервной системы и т. п. Известно, что даже тщательное измерение физической или физиологической величины никогда не дает абсолютно стационарной или строго периодической временной зависимости. Всегда будут наблюдаться флуктуации (отклонения) вокруг некоторого фиксированного уровня или периода колебаний. Кроме того, существуют системы настолько нерегулярные, что трудно найти лежащий в их основе стационарный или периодический процесс. Такие процессы рассматриваются в математике либо как шум (относящийся к флуктуациям), либо как хаос («наивысшая степень» порядка, нерегулярность, наблюдаемая в детерминированной системе). Хаос может наблюдаться и при полном отсутствии шума в окружающей среде.

Основу математической модели составляет система математических уравнений (формула 1.1). Динамическая математическая модель характеризует поведение системы во времени, которое можно описать с помощью таких физических понятий, как скорость и ускорение. Динамические модели описываются системами дифференциальных уравнений, на которые накладываются ограничения, вытекающие из физического или физиологического смыслов принятых величин:

где f1,…, fn - некоторые функции, x1,…, хп – независимые переменные, п - размерность фазового пространства, a,…, e и т. д. - параметры дифференциальных уравнений.

Стационарные устойчивые состояния соответствуют постоянным решениям уравнений системы 1.1 (рис. 1. 3, А). Стационарным колебаниям биологических или физических величин соответствуют периодические решения системы уравнений (рис. 1.3, Б). Нерегулярные (апериодические) временные решения уравнений соответствуют шуму или хаосу (рис 1.3, В).

При некоторых значениях параметров возможно получение нескольких решений, то есть система может находиться в нескольких стационарных состояниях (например, в двух состояниях). Переход системы, в результате которого она может оказаться в одном из возможных состояний, называется бифуркацией. Обычно одни состояния являются устойчивыми, другие – неустойчивыми. Если возможны два устойчивых состояния, то система может перескакивать из одного состояния в другое при незначительном внешнем воздействии, в том числе при флуктуации. Это явление называется бистабильностью.

В качестве примера построения модели периодического биологического процесса рассмотрим математическую модель «хищник - жертва» Вольтерра.

Модель Вольтера

Пусть в некотором замкнутом районе живут зайцы и рыси. Зайцы питаются растительной пищей, имеющейся всегда в достаточном количестве. Рыси (хищники) питаются только зайцами (жертвами). Обозначим число зайцев в этом районе через N1, а число рысей через N2. N1 и N2 являются функциями времени.

Так как количество пищи для зайцев не ограничено, мы можем считать, что при отсутствии хищников, их число возрастало бы с течением времени t прямо пропорционально числу имеющихся особей:

где ai – коэффициент пропорциональности.

Если бы в данном районе жили только рыси, то они бы вымерли из-за отсутствия пищи:

т. е. скорость вымирания пропорциональна числу особей.

Рассмотрим ситуацию, когда в данном районе живут и рыси , и зайцы. Тогда количество зайцев будет уменьшаться пропорционально числу встреч рыси и зайца (b1N1N2):

Количество рысей будет возрастать пропорционально числу встреч рыси и зайца:

Тогда поведение системы «хищник-жертва» будет описываться системой из двух дифференциальных уравнений:

где a1, a2, b1, b2 – некоторые коэффициенты пропорциональности, определяемые по опытным данным.