Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Общая модель

При рассмотрении динамических моделей сложных систем прослеживается закономерность поведения сложных систем, относящихся к разным областям науки: механике, физике, химии, биологии, социальным наукам. Эта закономерность вытекает из внутренней взаимосвязи элементов, составляющих сложную систему. Существуют науки, изучающие наиболее общие законы поведения и управления сложными системами: кибернетика, синергетика, диалектика и др. Нас интересует данный аспект в качестве еще одной разновидности метода моделирования. Часто можно провести аналогию между процессами явно не относящимися к одной области науки. При этом взгляд на изучаемую систему под новым углом зрения часто помогает найти новые характеристики системы, закономерности.

Рассмотрим систему уравнений (1.5), описывающую движение крови по кровеносному руслу в рамках механического подхода. Введем новые постоянные

Строго говоря, параметры h, Е, S и r не постоянны, они изменяются, например, при изменении давления в сосуде. Но при определенных условиях (например, при высоких скоростях крови в аорте), можно считать эти параметры постоянными.

Тогда систему уравнений (1.5) можно записать в виде:

Такой же вид имеют уравнения, известные в электротехнике и описывающие изменения электрического потенциала (j) вдоль электрической цепи (j/x) и во времени (j/t). Данная электрическая цепь содержит: резистор с омическим сопротивлением R, конденсатор, емкости C, и катушку индуктивности с индуктивностью L.

Можно провести аналогию между движением крови по кровеносному руслу и протеканием электрического тока по электрической цепи.

Объемную скорость крови можно сравнить с силой электрического тока. Перепад давлений вызывает ток крови, а разность потенциалов – электрический ток. Эластичность стенок кровеносного сосуда делает участок сосуда переменной емкостью для крови. В случае электрической цепи емкостью для электрических зарядов является конденсатор. Вязкостное сопротивление движению крови по кровеносному руслу можно сравнить с омическим сопротивлением электрической цепи. И, наконец, инерционные свойства крови лежат в основе инерционной индуктивности крови, подобно тому, как электромагнитная индукция электронов лежит в основе индуктивности катушки индуктивности.

В рамках данной аналогии можно построить электрическую модель сердечно-сосудистой системы (рис. 1.8.).

Аналогом сердца в этой модели является источник несинусоидального переменного электрического напряжения (U). Сердечный клапан представляется выпрямителем тока (В). Как уже рассматривалось, упругие свойства крупных сосудов моделируются конденсатором (емкости С). А вязкостные свойства периферических сосудов – резистором (сопротивления R).