Водные свойства горных пород

От пористости породы зависит ее влагоемкость:

Влагоемкость —это свойство породы содержать в своих порах то или иное количество воды.
Полная влагоемкость — количество воды, заполняющее все пустоты породы.
Фактическая влагоемкость определяется количеством воды, действительно содержащимся в породе.
Капиллярная влагоемкость составляет количество воды, удерживаемое горной породой в капиллярах при свободном стоке. Капиллярная влагоемкость тем меньше, чем больше водопроницаемость породы.

Под водоотдачей понимается количество гравитационной воды, которое может содержаться в горной породе и которое она может отдать при откачке. Водоотдача может быть выражена процентным № отношением объема свободно вытекающей из породы воды к объему породы.

Водонасыщенность пород представляет то количество воды, которое отдается породой. По степени водообильности породы делятся на сильноводообнльные с дебитом скважины больше 10 л/с, водо-обильные с дебитом скважины 1 - 10 л/с, слабоводообильные — 0,1 - 1л/с.
Водонасосные породы, а также пласты, линзы и пр.— это такие, в которых поры, трещины и другие пустоты заполнены гравитационными водами — гравитационно-водоносными, водами капиллярными и пленочными водоносными.

Водопроницаемость — свойство пород пропускать воду вследствие наличия в них пор, трещин и других пустот. Величина водопроницаемости определяется коэффициентом водопроницаемости. По степени водопроницаемости породы могут быть разделены на водопроницаемые, полуводопроницаемые и водонепроницаемые.

Водонепроницаемость — свойство горных пород не пропускать воду. К ним относятся, например, нетрещиноватые известняки, кристаллические сланцы и др.

10.Источники и типы питания рек. Водный и уровенный режим рек. Классификация рек по типам питания.

Основной источник питания всех рек на земном шаре -- атмосферные осадки. При определенных условиях часть выпадающих жидких осадков образует поверхностный сток и служит непосредственным источником питания рек в периоды паводков. Твердые осадки аккумулируются на поверхности земли в виде снежного покрова. На равнинах и невысоких горах накопившийся за зиму снег тает в теплое время и также служит источником питания рек. Снег, накопившийся в более высоких горах, в отдельные годы стаивает не весь, пополняет запасы вечных снегов и дает начало ледникам. Талые воды этих снегов и ледников являются еще одним источником, питания рек. Часть талых и дождевых вод просачивается в верхние слои земли и при некоторых условиях быстро дренируется реками, при этом несколько растягивается процесс стока этих вод в речную сеть. Некоторая часть талых и дождевых вод идет на пополнение запасов подземных вод, которые значительно медленнее попадают в русла рек. Подземные воды являются также источником питания рек; они обеспечивают устойчивость речного стока. Таким образом, существуют четыре источника питания рек -- жидкие осадки, снежный покров, высокогорные снега и ледники и подземные воды (грунтовые воды) [4].

Соотношения между количеством воды, поступающим в реки от того или иного источника питания, неодинаковы в различных районах. Меняются они и от сезона к сезону для одной и той же реки. Эти различия зависят главным образом от климатических условий: режима осадков и температуры воздуха в течение года.

ВОДНЫЙ РЕЖИМ РЕК, изменение во времени расходов, уровней и объёмов воды в реках. В годовом цикле этих колебаний выделяют 3 осн. фазы В. р. р.: весеннее или летнее половодье; летнюю и зимнюю межень (периоды низкой водности, возникающие вследствие резкого уменьшения притока воды с водосбора); осенние паводки.

Результаты наблюдений за уровнями позволяют установить зоны и продолжительность затопления отдельных участков речной долины, скорость продвижения паводочной волны вдоль по реке (в том случае, если «а реке имеется не менее двух водомерных постов) и сделать выводы об общем характере изменения водности реки в течение года я в многолетнем периоде, о наиболее высоких половодьях и т. д.

Среди этих так называемых характерных уровней наибольший практический интерес представляют уровни: 1) наивысший годовой, 2) весеннего ледохода, 3) осеннего ледохода, 4) летних и осенних паводков, 5) наинизший летний и зимний.

Типы уровенного режима

1) колебания уровней, связанные с изменением водности потока;

2) колебания уровней, возникающие вследствие изменения сопротивлений в русле;

3) сгонно-нагонные и приливо-отливные колебания уровней;

4) колебания уровней, возникающие под влиянием естественных и искусственных подпоров.

Изменение водности потока прежде всего определяет сезонный характер колебания уровней. Основные черты внутригодовых колебаний уровней под влиянием изменения водности соответствуют типам водного режима.

Указанные общие закономерности годового хода водности применительно к оценке уровенного режима должны быть дополнены учетом особенностей в ходе уровней рек различных размеров и рек, сток которых зарегулирован озерами и болотами.

В зависимости от той роли, которую играет тот или иной источник питания в формировании режима рек, можно выделить четыре основные группы рек: реки с преобладанием:

1) снегового,
2) дождевого,
3) ледникового,
4) грунтового питания.

11.Характеристики и факторы речного стока. Гидрограф стока.

Речной сток — перемещение воды в виде потока по речному руслу. Происходит под действием гравитации. Является важнейшим элементом круговорота воды в природе, с помощью которого происходит перемещение воды с суши вокеаны или области внутреннего стока. Количественное значение стока в единицу времени называется расходом воды.

Главной характеристикой речного стока являются расходы воды. Наряду с экстремальными значениями (максимальными и минимальными) часто используются расходы воды, осредненные за различные периоды времени (сутки, месяц, сезон, год и т. д.).

Все остальные характеристики речного стока, по сути, являются производными от соответствующих расходов воды.

Объем стока W (м3, км3) — количество воды, стекающей с водосбора за какой-либо интервал времени (сутки, месяц, год и т. д.).

Модуль стока М (л/с • км2) или q[м3/c • км2)] —количество воды, стекающей с единицы площади водосбора в единицу времени.

Слой стока h (мм) — количество воды, стекающей с водосбора за какой-либо интервал времени, равное толщине слоя, равномерно распределенного по площади этого водосбора.

Коэффициент стока — отношение слоя стока к количеству выпавших на площадь водосбора осадков, обусловивших возникновение стока.

Годовой сток подсчитывается в умеренном климате не за календарный год, а за гидрологический, начинающийся осенью (1 октября или 1 ноября), когда запасы влаги в речных бассейнах, переходящие из одного года в другой, малы. При подсчете за календарный год сток и осадки не могут соответствовать друг другу, так как осадки, выпавшие в конце одного года, стекают весной следующего года.

Из уравнения водного баланса для суши Ec=Xt—У, где Ес — испарение с поверхности суши, Хс — осадки на ее поверхность, У — сток, видно, что важнейший фактор формирования стока - климат; сток является функцией осадков и испарения, т. е. гидрометеорологических компонентов географического ландшафта, отражающих то соотношение тепла и влаги, которое свойственно данной географической зоне. Все остальные элементы ландшафта, или факторы подстилающей поверхности, влияют на сток не непосредственно, а через осадки и испарение.

Рельеф воздействует на сток, главным образом, через осадки испарение. Осадки с повышением местности возрастают до известного предела. Испарение же, наиболее значительное в низких местах, убывает с высотой вследствие понижения температуры и уменьшения радиационного баланса. Поэтому сток с высотой растет, правда, следует заметить, что изменение осадков и испарения с высотой не так однозначно и зависит от форм рельефа, экспозиции склонов относительно направления преобладающих влагоносных ветров и пр. лияние леса на норму стока, согласно уравнению водного баланса, может быть вызвано его воздействием на количество осадков и на испарение.

Гидрограф — график изменения во времени расходов воды в реке или другом водотоке за год, несколько лет или часть года (сезон, половодье или паводок).

Гидрограф строится на основании данных о ежедневных расходах воды в месте наблюдения за речным стоком. На оси ординат откладывается величина расхода воды, на оси абсцисс — отрезки времени.

Гидрограф отражает характер распределения водного стока в течение года, сезона, половодья (паводка), межени. Гидрограф используется для вычисления эпюры руслоформирующих расходов воды.

Единичный гидрограф — гидрограф, показывающий изменение расходов воды во время единичного паводка.

Типовой гидрограф — гидрограф, отражающий общие черты внутригодового распределения расхода воды в реке.

Многолетний гидрограф паводка — расчётная паводочная волна в определённом створе водотока, характеризуемая определённым многолетним расходом, типовым гидрографом и соответствующим объёмом.

12.Общая схема вертикальной температурной стратификации вод Мирового океана. Суточный и годовой ход температуры вод Мирового океана.

Стратификация вод морских и пресных водоёмов, распределение плотности воды по вертикали. Характеризуется вертикальным градиентом плотности. Чем больше увеличение плотности с глубиной и чем больше её вертикальный градиент, тем выше устойчивость С. в. При обратном изменении плотности и при малых её вертикальных градиентах С. в. неустойчива. Устойчивая С. в. обусловливает уменьшение вертикального обмена теплом, веществом и количеством движения. Неустойчивая С. в. определяет интенсивный вертикальный обмен в толще воды. В океанах и морях С. в. определяется главным образом изменениями температуры и солёности воды на поверхности и в толще воды, где их изменения связаны с адвекцией и адиабатическими процессами. В пресных водоёмах, где температура наибольшей плотности воды равна 4 ?С, С. в. зависит только от температуры. В этом случае возможны два типа стратификации: 1) температура всей воды в озере не ниже 4 ?С; тогда наиболее тёплые массы воды будут расположены у поверхности, ниже - всё более холодные (прямая стратификация); 2) температура воды ниже 4 ?С: тогда вода у поверхности холоднее, чем в нижних слоях (обратная стратификация).

Суточные и годовые изменения температуры связаны с изменениями компонент теплового баланса, а также с теплом, переносимым течениями и вертикальным обменом вод. В ходе температуры на поверхности океанов и морей проявляются главным образом суточные и годовые колебания радиационной компоненты теплового баланса. Однако накопление и расходование тепла морем запаздывает относительно максимума и минимума температуры воздуха. Наивысшие температуры воды на поверхности наблюдаются после полудня, около 14—16 часов, а низшие — около 4—8 часов утра.

Изменение запасов тепла в деятельном слое моря в течение суток сравнительно невелико, так как в дневные часы при повышении прихода тепла за счет радиации и теплообмена с атмосферой нагревание воды ослабляется потерей тепла на испарение, а ночью конденсация влаги на поверхности моря уменьшает охлаждение. Наконец, высокая теплоемкость воды способствует сглаживанию температуры при изменении запасов тепла в течение суток. Поэтому суточная амплитуда температуры на поверхности воды океанов и морей невелика и значительно меньше суточных амплитуд температуры воздуха.

Нередко амплитудой называют разность крайних значений, что неверно: амплитудой колебания называется наибольшее отклонение от среднего значения.

13.Снеговая линия и хионосфера. Формирование, строение, питание, движение ледников.

 

Снеговая линия — уровень земной поверхности, выше которого накопление твёрдых атмосферных осадков преобладает над их таянием и испарением.

Снеговая линия формируется под воздействием климатических особенностей данной территории, прежде всего соотношения тепла и влаги, а также макро- и мезорельефа. Она представляет собой отражение нижнего уровня хионосферыв реальных условиях рельефа земной поверхности. Снеговая линия снижается в холодных и влажных районах и поднимается в тёплых и засушливых. В Антарктике она опускается до уровня моря, а в Арктике расположена на несколько сотен метров выше уровня моря. Наибольшей высоты снеговая линия достигает в сухих тропических и субтропических районах (на Тибетском нагорье и Южноамериканских Андах до 6,5 км), снижаясь на экваторе до 4,4 км

Хионосфера

часть тропосферы, в которой на поверхности суши при благоприятных условиях рельефа возможно зарождение и существование снежников и ледников. Х., окружающая Землю непрерывной оболочкой мощностью до 10 км (наибольшая мощность в экваториальном поясе и в низких широтах умеренных поясов), обладает таким сочетанием тепла и влаги, при котором годовое количество твёрдых осадков, выпадающих на горизонтальную и незатенённую поверхность, превышает их убыль. Верхняя граница обычно расположена выше уровня самых высоких гор и соответствует нулевому балансу твёрдых атмосферных осадков (годовая сумма которых обычно возрастает в горах до некоторой высоты, а затем опять уменьшается); нижняя граница Х. при пересечении с горными хребтами образует снеговую линию. Она повышается по мере удаления от источников влаги, а над внутренними частями плоскогорий лежит выше, чем на наветренных склонах гор.

Ледники – это подвижные скопления льда атмосферного происхождения на поверхности суши. В настоящее время ледники покрывают площадь 16,3 млн км2, что составляет почти 11% суши. Общий объем ледникового покрова Земли оценивается величиной 30 млн км3, что эквивалентно 27 млн. км3 воды. Основное количество льда сосредоточено в Антарктиде (около 90%) и в Гренландии (почти 10%), а на оставшиеся .ледниковые районы приходится менее 1%. Ежегодно на Земле возникает и исчезает 1,8% всего ледникового покрова.

Ледники образуются в полярных областях и в горах, где весь год отрицательная температура воздуха и годовое количество снега превышает расход его на таяние и испарение, т. е. абляцию.

Каждый ледник состоит из двух главных частей – области питания, или фирнового бассейна, и области расхода (абляции), также именуемой языком. Эти области лежат в равных высотных поясах, в условиях очень неодинакового климата: первые – на значительных высотах, где летние температуры низки, атмосферные осадки обильны и основная их масса выпадает в виде снега; тогда как вторые – гораздо ниже, где летние сезоны тёплые и возможны дожди. По этой причине в верхней области ежегодное выпадение снега превышает его таяние, а значит, идёт постоянный прирост массы льда, а в нижней области, наоборот, преобладает таяние, и эта масса убывает.

Области питания горных ледников обычно занимают горные цирки, или кары, относящиеся к самому верхнему ярусу рельефа гор, а области расхода чаще всего оказываются в их среднем поясе, а иногда и в предгорьях. У покровных ледников, имеющих форму плоско-выпуклых куполов, области питания занимают обширные привершинные поверхности, или ледниковые плато, а области расхода приурочены к нижним частям их склонов, окружая эти плато со всех или с нескольких сторон.

Итак, в области питания идёт постоянное накопление снега и фирна; как говорят гляциологи, для неё характерен положительный баланс массы. Помимо снегопадов в питании ледника участвуют также снежные лавины и метели: они сносят снег с окружающих плато и склонов и концентрируют его в фирновом бассейне. В области расхода баланс массы, наоборот, отрицательный. Здесь потери льда, связанные с таянием и стоком, а в случае «приливных» ледников ещё и с откалыванием айсбергов, существенно превышают снегонакопление. Тем не менее масса фирна и льда в верхней области совсем не обязательно растёт, а в нижней далеко не всегда убывает. Будь это так, область питания скоро стала бы непомерно большой, а область абляции могла бы вовсе исчезнуть. На самом деле не происходит ни того, ни другого. Ежегодно возникающий дисбаланс между двумя областями ледника компенсируется с помощью особого механизма, который называется внутренним массообменом и состоит в оттоке «излишков, льда из фирнового бассейна и их притоке в область расхода, где каждый «бюджетный» год завершается с «недостачей».


Существенной особенностью льда является его пластичность и способность течь под давлением. Поэтому движение ледника во многом аналогично движению водного потока, но характеризуется несравненно меньшими скоростями. Таким образом, движение ледника ни в коем случае нельзя рассматривать как простое скольжение льда под уклон. Оно действительно является подобием течению воды, обусловленным пластичностью льда под давлением верхних слоев на нижние и напором верхних частей ледника на расположенные ниже по долине.
Лед под давлением испытывает пластические деформации, что показывает простой опыт. Внутрь полого шара, состоящего из двух полушарий, соединяемых болтами, кладут неправильный кусок льда и затем завинчивают болты. Излишек льда выдавливается через шов между полушариями, а остальная часть куска приобретает форму шара, причем не образуется никаких трещин. При большой мощности льда ледник может даже иногда двигаться вверх по уклону ложа, преодолевая значительные неровности. Но наклон ложа, конечно, всегда благоприятствует течению льда.

14.Понятие реки, речной системы, речного бассейна и их морфометрические характеристики.

Река — природный водный поток (водоток), текущий в выработанном им углублении — постоянном естественном русле и питающийся за счёт поверхностного и подземного стока с его бассейна.

Речная система — совокупность рек, изливающих воды одним общим руслом или системой протоков в море, озеро или другой водоём.

Состоит из главной реки (ствола системы) и притоков первого, второго и следующих порядков. Притоками первого порядка называются реки, непосредственно впадающие в главную реку, второго порядка — притоки притоков первого порядка и т. д. Иногда наименование порядка рек ведётся, наоборот, от мелких рек к главной.

Название речной системы даётся по названию главной реки, которая является обычно наиболее длинной и многоводной рекой в системе.

РЕЧНОЙ БАССЕЙН – часть земной поверхности с расположенной под ней толщей почво-грунтов, откуда вода стекает в реку до какого-либо гидрометрического створа (см.) или во всю речную систему.

К морфометрическим характеристикам относятся длина реки, коэффициент извилистости, густота речной сети. Длиной реки называется расстояние по реке от устья до истока. На карте длину реки измеряют обычно курвиметром или мокрой ниткой. Степень извилистости реки определяется коэффициентом извилистости — отношением длины реки к длине прямой линии, соединяющей исток и устье.
Густота речной сети определяет условия стока атмосферных осадков, питания грунтовыми водами и представляет собой длину речной сети, приходящуюся на 1 км2 площади какой-либо территории. Для речных бассейнов густота речной сети определяется как отношение суммы длин всех водотоков к площади бассейна реки. Густота речной сети зависит от климата, геологического строения местности и рельефа. В пределах СССР густота речной сети распределена крайне неравномерно и изменяется от нуля в пустынях Средней Азии до 1,5—2,6 км/км2 в горных районах Кавказа и Карпат.
Морфометрические особенности речной сети существенно влияют на формирование стока, водность рек и их режим. Знание их необходимо для выполнения гидрологических расчетов при проектировании и строительстве гидротехнических сооружений, проведении мелиоративных работ и т. д.

15.Морские течения. Общие закономерности распределения поверхностных течений Мирового океана (схема колец океанической циркуляции). Характеристики течений и факторы их определяющие.

Морские течения — постоянные или периодические потоки в толще мирового океана и морей. Различают постоянные, периодические и неправильные течения; поверхностные и подводные, теплые и холодные течения. В зависимости от причины течения, выделяются ветровые и плотностные течения. Расход течения измеряется вСвердрупах.

Закономерности распространения поверхностных течений. Картина поверхностных течений Мирового океана была установлена в основных чертах к XX веку. Определение направления и скорости течения производилось главным образом из наблюдений за движением естественных и искусственных поплавков (плавника, бутылок, дрейфа кораблей и льдин и др.) и по разности в определении места корабля способом счисления пути и способом наблюдения за небесными светилами. Современная задача океанологии состоит в детальном изучении течений во всей толще океанической воды. Это производится различными инструментальными способами, в частности радиолокационными. Сущность последнего состоит в том, что спускают в воду отражатель радиоволн, и, фиксируя на радиолокаторе его передвижение, определяют

направление и скорость течения.

По происхождению течения делятся на фрикционные, гравитационно-градиентные и приливо-отливные. Во фрикционных течениях выделяются дрейфовые,вызванные постоянными или господствующими ветрами; они имеют наибольшее значение в циркуляции вод Мирового океана.

Гравитационно-градиентные течения подразделяются на стоковые (сточные) и плотностные. Стоковые возникают в случае устойчивого поднятия уровня воды, вызванного ее притоком (например приток волжской воды в Каспийское море) и обилием осадков, или в случае опускания уровня, обусловленного оттоком воды и потерей ее на испарение (например, в Красном море). Плотностные течения — результат неодинаковой плотности воды на одной и той же глубине. Они возникают, например, в проливах, соединяющих моря с разной соленостью (например между Средиземным морем и Атлантическим океаном).

Приливо-отливные течения создаются горизонтальной составляющей приливообразующей силы.

В зависимости от расположения в толще воды выделяются течения поверхностные, глубинные и придонные.

По продолжительности существования можно выделить течения постоянные, периодические и временные. Постоянные течения из года в год сохраняют направление и скорость течения. Их могут вызвать постоянные ветры, например пассаты. Направление и скорость периодических течений изменяются в соответствии с изменением вызвавших их причин, например муссонов, приливов. Временные течения вызываются случайными причинами.

Течения могут быть теплыми, холодными и нейтральными. Первые теплее, чем вода в том районе океана, по которому они проходят; вторые холоднее окружающей их воды. Как правило, течения, направляющиеся от экватора, теплые, а течения, идущие к экватору, холодные. Холодные течения обычно менее соленые, чем теплые. Это объясняется тем, что они текут из областей с большим количеством осадков и меньшим испарением или из областей, где вода распреснена таянием льдов.
16.Физические свойства морской водьг (оптические, звуковые, электрические, поверхностное натяжение и радиоактивность морской воды).

 

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая—1,028 грамма на кубический сантиметр — вблизи океанского дна.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли.

Распространение в морской воде световых и звуковых волн также имеет свои особенности.

амая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров.

Вода служит хорошим проводником для звука. Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности.

Всем известна аномалия плотности. Она двоякая. Во-первых, после таяния льда плотность увеличивается, проходит через максимум при 4 оС и только затем уменьшается с ростом температуры. В обычных жидкостях плотность всегда уменьшается с температурой. И это понятно. Чем больше температура, тем больше тепловая скорость молекул, тем сильнее они расталкивают друг друга, приводя к большей рыхлости вещества. Разумеется, и в воде повышение температуры увеличивает тепловую скорость молекул, но почему-то это приводит в ней к понижению плотности только при высоких температурах.

Вторая аномалия плотности состоит в том, что плотность воды больше плотности льда (благодаря этому лед плавает на поверхности воды, вода в реках зимой не вымерзает до дна и т.д.). Обычно же при плавлении плотность жидкости оказывается меньше, чем у кристалла. Это тоже имеет простое физическое объяснение. В кристаллах молекулы расположены регулярно, обладают пространственной периодичностью - это свойство кристаллов всех веществ. Но у обычных веществ молекулы в кристаллах, кроме того, плотно упакованы. После плавления кристалла регулярность в расположении молекул исчезает, и это возможно только при более рыхлой упаковке молекул, то есть плавление обычно сопровождается уменьшением плотности вещества. Такого рода уменьшение плотности очень мало: например, при плавлении металлов она уменьшается на 2 - 4%. А плотность воды превышает плотность льда сразу на 10%! То есть скачок плотности при плавлении льда аномален не только по знаку, но и по величине.

Вот еще пример аномалии воды: необычное температурное поведение ее сжимаемости, то есть степени уменьшения объема при увеличении давления. Обычно сжимаемость жидкости растет с температурой: при высоких температурах жидкости более рыхлы (имеют меньшую плотность) и их легче сжать. Вода обнаруживает такое нормальное поведение только при высоких температурах. При низких же сжимаемость ведет себя противоположным образом, в результате чего в ее температурном поведении появляется минимум при 45 оС.

На этих двух примерах мы видим, что необычные свойства воды характеризуются экстремальным поведением, то есть появлением максимумов (как в плотности) или минимумов (как в сжимаемости) на кривых их зависимостей от температуры. Такие экстремальные зависимости означают, что в воде имеет место противоборство двух процессов, каждый из которых обусловливает противоположное поведение рассматриваемого свойства. Один процесс - это обычное тепловое движение, усиливающееся с ростом температуры и делающее воду (как и любую другую жидкость) более раз упорядоченной; другой процесс необычный, присущий только воде, за счет него вода становится более упорядоченной при низких температурах. Разные свойства воды по-разному чувствительны к этим двум процессам, и поэтому положение экстремума наблюдается для каждого свойства при своей температуре.

Среди необычных свойств воды трудно обойти вниманием еще одно - ее исключительно высокое поверхностное натяжение 0,073 Н/м (при 20o С). Из всех жидкостей более высокое поверхностное натяжение имеет только ртуть. Оно проявляется в том, что вода постоянно стремится стянуть, сократить свою поверхность, хотя она всегда принимает форму емкости, в которой находится в данный момент. Вода лишь кажется бесформенной, растекаясь по любой поверхности. Сила поверхностного натяжения заставляет молекулы ее наружного слоя сцепляться, создавая упругую внешнюю пленку. Свойства пленки также определяются замкнутыми и разомкнутыми водородными связями, ассоциатами различной структуры и разной степени упорядоченности. Благодаря пленке некоторые предметы, будучи тяжелее воды, не погружаются в воду (например, осторожно положенная плашмя стальная иголка).

17.Эволюция и типы озерных котловин. Морфологические части озерной котловины. Морфометрия озер. Водный баланс озер (составные части, уравнение).

Углубления, в которых находятся озера, называются озерными котловинами. Причин образования озерных котловин много, и котловины эти очень разнообразны. Самые большие и самые глубокие из них образуются в резуль­тате движений земной коры. При медленном опускании ее обшир­ных участков возникли котловины Каспийского и Аральско­го морей-озер. Котловина Байкала — следствие образования ги­гантских трещин и раздвижения участков земной коры.

В долинах горных рек встречаются глубокие запрудные озера. Примером может быть Сарезское озеро на Памире глу­биной более 400 м. Грандиозный обвал, вызванный землетрясе­нием, преградил путь реке Мургаб, создав плотину, которую река не может размыть уже более 80 лет. Путь реки может преградить также поток лавы или ледник.

Есть озера, занимающие кратеры потухших вулканов. В местности, сложенной ра­створимыми породами, озерные котловины образуются вследствие опускания (прова­ла) поверхности над пустота­ми. На холмистых равнинах озера лежат в понижениях между холмами.

В пойменных долинах часто можно видеть небольшие сильно вытянутые озера — старицы. Это участки бывшего русла реки, изменившей в этом месте свое направление.

По происхождению выделяют более 30 видов озерных котловин, из которых наиболее важны:

1.Тектонические — в прогибах (мульдах), например Аральское море, в сбросах (Байкал, Танганьика), вулканические (Кроноцкое озеро).
2. Экзогенные — самые многочисленные: старицы, лиманы, подпрудные обвалами или пересыпями, ледниковые, термокарстовые, карстовые, просадочные и другие.
3. Искусственные — водохранилища, пруды.

Озера заполняют котловины, которые имеют разный генезис. Поскольку процессы формирования этих котловин часто зависят от местных условий, озера концентрируются в определенных районах, например в Озерном округе на северо-западе Англии, озерном районе в Австрии и обширном поясе озер, охватывающем штаты Миннесота, Висконсин и Мичиган. На формирование озерных котловин влияют тектоническая активность, вулканизм, оползни, ледниковые процессы, карст и суффозия, флювиальные процессы, эоловые процессы, береговые процессы, аккумуляция органогенных отложений, подпруживание водотоков человеком или бобрами и падение метеоритов.

Древнейшие и самые глубокие из ныне существующих озер возникли под влиянием тектонической активности, однако большинство озер образовалось благодаря ледниковым процессам. Тем не менее роль других перечисленных факторов тоже немаловажна.

Водный баланс может быть положительным, отрицательным, а за некоторый промежуток времени — нулевым или нейтральным. Поэтому и объем воды в озере может увеличиваться, уменьшаться или оставаться неизменным. Водный баланс озера изменяется в течение года. Весной в умеренных широтах резко возрастает приток воды в озеро, летом, наоборот, возрастает расход воды за счет ее испарения. Это отражается на сезонном колебании уровня
озер.
Питаются озера главным образом атмосферными осадками, которые выпадают в виде дождей или снега прямо на поверхность озера или его водосборную площадь. В экваториальном, тропическом и субтропическом поясах основным источником питания является дождь, в умеренном и полярном — снег и дождь. Горные, арктические и антарктические озера кроме снеговых вод питаются ледниковыми водами.

18.Соленость морской воды. Особенности солевого состава Мирового океана. Факторы определяющие соленость. Распределение солености по поверхности Мирового океана. Хлорный коэффициент.

Соленость морской воды определяется как общее количество твёрдых веществ в граммах, растворённое в 1 кг морской воды, при условии, что все галогены заменены эквивалентным количеством хлора, все карбонаты переведены в окислы, органическое вещество сожжено. Под соленостью подразумевается содержание всех растворенных в воде веществ, а не только солей. Соленость измеряется в «‰» («промилле»). Средняя соленость мирового океана 35 ‰. Это означает, что в 1 кг морской воды содержится 35 г солей. Для калибровки приборов в Бискайском заливе добывается так называемая нормальная вода с солёностью близкой к 35 ‰. Колебания величины солености зависят от соотношения количества осадков и величины испарения; во внутренних морях большое значение имеет количество воды, приносимой реками.

Больше всего в ней солей — хлоридов (89%) и сульфатов (11%), придающих воде горько-солёный вкус. Ещё во время кругосветной экспедиции «Челленджера» было отмечено, что количество растворённых в водах океана солей может существенно разниться, но соотношение солей, определяющих солёность вод, во всех районах Мирового океана одинаково. Постоянство солевого состава — важная особенность морской воды.

География солености Мирового океана в общих чертах подчиняется закону широтной зональности. В открытом океане на ее изменения влияет количество атмосферных осадков, а также величина испарения. На профиле, проходящем вдоль меридиана от Северного полюса до Антарктиды, преобладанию осадков в умеренных широтах отвечает пониженная соленость, преобладанию испарения в тропиках - повышенная (рис. 3.6). Соленость увеличивается при образовании льда, поскольку замерзает только пресная вода, а рассол стекает в море. Опреснение вблизи берегов вызывает речной сток.