Пусть X – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание m . Докажите, что P(X 4) m/4 .

Докажем неравенство Маркова:

Если x>0 и a=const, a>0, то

Док-во: Введём новую величину:

Y a
P P(x<a) P(x a)

 

X Y

M(x) M(y), M(y)= aP(X a)

aP(X a) M(x)

P(X a)

В нашем примере a=4 (т.е. a=const), a>0, M(x)=m

По неравенству Маркова: P(X 4) m/4

 

7. Докажите, что если X и Y – независимые дискретные случайные величины, принимающие конечное множество значений, то М(XY)=М(X)М(Y)

Если случайные величины X и Y независимы, то математическое ожидание их произведения равно произведению их математических ожиданий (теорема умножения математических ожиданий).

Возможные значения X обозначим x1, x2, , возможные значения Y - y1, y2, а pij=P(X=xi, Y=yj). Закон распределения величины XY будет выражаться соответствующей таблицей. А M(XY)= Ввиду независимости величин X и Y имеем: P(X= xi, Y=yj)= P(X=xi) P(Y=yj). Обозначив P(X=xi)=ri, P(Y=yj)=sj, перепишем данное равенство в виде pij=risj

Таким образом, M(XY)= = . Преобразуя полученное равенство, выводим: M(XY)=( )( ) = M(X)M(Y)

8. Докажите, что если X и Y – дискретные случайные величины, принимающие конечное множество значений, то М(X +Y) = М(X ) +М(Y).

Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:M(X+Y)= M(X)+M(Y). Док-во. Пусть случайные величины X и Y заданы следующими законами распределения(*)( возьмем 2 значения):

X x1 x2 p p1 p2 Y y1 y2 g g1 g2

Составим все возможные значения величины X+Y. Для этого к каждому возможному значению X прибавим возможное значение Y; получим x1+y1, x1+y2, x2+y1, x2+y2. Предположим, что эти возможные значения различны( если не так, то доказательство аналогично), и обозначим их вероятности соответственно через p11,p12,p21,p22. Математическое ожидание величины X+Y равно сумме произведений возможных значений на их вероятности: M(X+Y) = (x1+y1)* *p11+(x1+y2)* p12+(x2+y1)* p21+(x2+y2)* p22, или M(X+Y) = x1*(p11+p12)+ x2*(p21+p22)+ +y1*(p11+p21)+ y1*(p12+p22). Докажем, что p11+p12=p1. Событие, состоящие в том, что X примет значение x1 (вероятность этого события равна p1), влечет за собой событие, которое состоит в том, что X+Y примет значение x1+y1 или x1+y2 (вероятность этого события по теореме сложения равна p11+p12), и обратно. Отсюда следует, что p11+p12=p1. Аналогично доказываются равенства p21+p22=p2, p11+p21=g1 и p12+p22=g2. Подставляя правые части этих равенств в соотношение (*), получим M(X+Y)=(x1p1+x2p2)+(y1g1+y2g2), или M(X+Y)= M(X)+M(Y).

9. Пусть Х – дискретная случайная величина, распределенная по биномиальному закону распределения с параметрами n и р. Докажите, что М(Х)=nр, D(Х)=nр(1-р).

Пусть производится n независимых испытаний, в каждом из которых может появиться событие А с вероятностью р, так что вероятность противоположного события равна q=1-p. Рассмотрим сл. величину Х – число появления события А в n опытах. Представим Х в виде суммы индикаторов события А для каждого испытания: Х=Х12+…+Хn. Теперь докажем, что М(Хi)=р, D(Хi)=np. Для этого рассмотрим закон распределения сл. величины, который имеет вид:

Х
Р Р q

Очевидно, что М(Х)=р, случайная величина Х2 имеет тот же закон распределения, поэтому D(Х)=М(Х2)-М2(Х)=р-р2=р(1-р)=рq. Таким образом, М(Хi)=р, D(Хi)=pq. По теореме сложения математических ожиданий М(Х)=М(Х1)+..+М(Хn)=nр, D(Х)=D(Х1)+…+D(Хn)=npq=np(1-р).

 

10. Пусть X – дискретная случайная величина, распределенная по закону Пуассона с параметром . Докажите, что M(X ) = D(X ) = .

Закон Пуассона задается таблицей:

X
P e e e!22 e!33

 

Отсюда имеем:

=

Таким образом, параметр , характеризующий данное пуассоновское распределение, есть не что иное как математическое ожидание величины X. Это легко понять, если вспомнить, что формулы Пуассона получились как предельный вариант формул Бернулли, когда , причем nn = np. Поскольку для биномиального закона математическое ожидание равно np, то неудивительно, что для пуассоновского закона M(X) = . Более того, мы можем предположить, что дисперсия X тоже будет равна , поскольку для биномиального закона D(X) = npq и 1 при q. Действительно, непосредственный подсчет дисперсии подтверждает это предположение, однако мы не приводим его здесь из-за сложности выкладок. Ниже мы выведем эти формулы более простым способом. Таким образом, для закона Пуассона

M(X) = , D(X) =

 

11. Пусть Х – дискретная случайная величина, распределенная по геометрическому закону с параметром р. Докажите, что M (X) = 1/Р.

Геометрический закон связан с последовательностью испытания Бернулли до 1-го успешного А (события), р=р(А)

х n
Р р pq Pqn-1

 

12. Докажите, что коэффициент корреляции случайных величин Х и У удовлетворяет условию .

Определение. Коэффициентом корреляции двух слу­чайных величин называется отношение их ковариации к произведе­нию средних квадратических отклонений этих величин: pxy=Kxy/«сигма»х«сигма»х. Из определения следует, что рху=рух=р. Очевидно также, что коэффициент корреляции есть безразмерная величина. Отметим свойства коэффициента корреляции.

1. Коэффициент корреляции принимает значения на отрезке [-1;1],т.е. -1<р<1.Из неравенства

 

Тк As и Ex не меняются при меняющихся заменах, а любое равномерное распределение на отрезке может быть получено линейной заменой из любого другого равномерного распределения, например, из равномерного распределения на отрезке, то достаточно посчитать As и Ex для этого распределения.

As=3/3, =D, 3=M[(x-M(x)3]

Ex= 4/4-3

Плотность fx=1/(b-a)=1, 3= Sb a fx(t)tdt== Sb a tdt=t2/2 в пределах от a до =(b-a)2/2

D== Sb a fx(t)t2dt=(b-a)3/3

=D=(b-a)3/3

As=3/3=((b-a)2/2)/( (b-a)3/3 )

Ex= 4/4-3=((b-a)5 /5)/(( b-a)3/3)2 - 3

4= M[(x-M(x)4] fx(t)tdt= Sb a t4dt=(b-a)5 /5

 

Как вычисляется дисперсия в случае распределения с плотностью f (x)? Докажите, что для случайной величины X с плотностью дисперсия D(X ) не существует, а математическое ожидание M(X ) существует.