Первый закон Кирхгофа в дифференциальной форме

 

Если в проводящей среде выделить некоторый объем, по которому протекает постоянный, не изменяющийся во времени ток, то можно сказать, что ток, который войдет в объем, должен равняться току, вышедшему из него, иначе в этом объеме происходило бы накопление зарядов, что не подтверждается опытом. Сумму входящего в объем и выходящего из объема токов записывают так:

Равенство останется справедливым, если обе его части разделить на объем:

Очевидно, что последнее соотношение будет справедливо и в том случае, если объем, находящийся внутри замкнутой поверхности, устремить к нулю:

Таким образом, для постоянного, неизменного во времени поля в проводящей среде

(42.6)

Это соотношение называют первым законом Кирхгофа в дифференциальной форме. Оно означает, что в установившемся режиме в любой точке поля нет ни истока, ни стока линий тока проводимости.

 

Уравнение Лапласа для электрического поля в

Проводящей среде

 

Напряженность электрического поля в проводящей среде, как и в электростатическом поле, .

В неизменном во времени поле

(42.7)

Если среда однородна и изотропна (=const), то можно вынести за знак дивиргенции и, следовательно,

(42.8)

или

. (42.9)

Таким образом, поле в однородной проводящей среде подчиняется уравнению Лапласа. Поле постоянного тока в проводящей среде является полем потенциальным. В нем, в областях, не занятых источниками,

 

6. Переход тока из среды с проводимостью 1 в среду с

проводимостью 2. Граничные условия

Выясним, какие граничные условия выполняются при переходе тока из среды с одной проводимостью в среду с другой проводимостью.

Возьмем на границе раздела сред – линия 00 (рис. 42.2) замкнутый контур 1234. Составим циркуляцию вектора вдоль этого контура. Стороны 12 и 34 его весьма малы по сравнению со сторонами 23 и 41 (длину последних обозначим dl).

Так как вдоль любого замкнутого контура равен нулю, то он равен нулю и для контура 12341.

В силу малости отрезков 12 и 34 пренебрежем составляющими интеграла вдоль этих путей и тогда

или , (42.10)

т.е. на границе раздела равны тангенциальные составляющие напряженности поля.

На границе раздела равны нормальные составляющие плотностей токов. Докажем это.

 
 

На границе раздела выделим сплющенный параллелепипед (рис. 42.3,а). Поток вектора , втекающий в объем через нижнюю грань, равен ; поток вектора , вытекающий из объема через верхнюю грань . Так как , то

; . (42.11)

Следовательно, при переходе тока из среды с одной проводимостью в среду с другой проводимостью непрерывна тангенциальная составляющая вектора , то есть (но ), и непрерывна нормальная составляющая плотности тока (но ).

Отсюда следует, что полные значения вектора и вектора в общем случае меняются скачком на границе раздела.

Найдем связь между углом падения и углом преломления . В соответствии с рис. 42.3,б:

; или . (42.12)

Если ток переходит из среды с большой проводимостью (например, из металла) в среду с малой (например, в землю), то тангенс угла преломления меньше тангенса угла падения и, следовательно, угол меньше угла . Если весьма мало, то угол .

 

Вопросы для самоконтроля

 

1. Какой ток называют током проводимости , а какой – током смещения?

2. Как связаны вектор плотности тока и ток?

3. Проделайте вывод закона Ома в дифференциальной форме.

4. Что понимают под сторонней напряженностью электрического поля?

5. Почему уравнение называют обобщенным законом Ома, а также вторым законом Кирхгофа?

6. Проделайте вывод первого закона Кирхгофа в дифференциальной форме и поясните его физический смысл.

7. Получите выражение для закона Джоуля-Ленца в дифференциальной форме.

8. Докажите, что электрическое поле в проводящей среде подчиняется уравнению Лапласа.

9. Сформулируйте условия на границе раздела двух сред с разной удельной проводимостью.