Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Методика построения математической модели для компьютерной реализации. Описание полного цикла компьютерного моделирования.

Моделирование – это один из важнейших методов научного познания, с помощью которого создается модель (условный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемых явлений и факторов передается в форме конкретных математических уравнений.

Процесс построения математической модели включает в себя следующие типовые этапы:

1. формулирование целей моделирования;

2. качественный анализ экосистемы, исходя из этих целей;

3. формулировку законов и правдоподобных гипотез относительно структуры экосистемы, механизмов ее поведения в целом или отдельных частей (при самоорганизации эти законы "находит" компьютер);

4. идентификацию модели (определение ее параметров);

5. верификацию модели (проверку ее работоспособности и оценку степени адекватности реальной экосистеме);

6. исследование модели (анализ устойчивости ее решений, чувствительности к изменениям параметров и пр.) и эксперимент с ней.

При математическом моделировании важным моментом является первоначальная математическая постановка задачи. Она предполагает описание математической модели и указания цели ее исследования. Для одной и той же математической модели могут быть сформулированы и решены различные математические задачи. Например, для наиболее распространенной модели, такой как функциональная зависимость y = f(x), могут быть сформулированы следующие математические задачи:

1) найти экстремальное значение функции f(x): max f(x) или min f(x);

2) найти значение x, при котором f(x) = 0;

3) найти значение производной f'(x), значение интеграла и т.д.

Бурное развитие вычислительной техники выдвинуло на передний план при решении практических инженерных и научных задач вычислительную математику и программирование.

Вычислительная математика изучает построение и исследование численных методов решения математических задач посредством реализации соответствующих математических моделей.

Программирование обеспечивает их техническую реализацию.

Обобщенную схему математического моделирования можно представить следующим образом:

 

 

При реализации данного цикла требуют пристального внимания все его компоненты. Заключительным его этапом является получение численного результата и сопоставление его с целевой установкой и, как правило, для достижения желаемого или приемлемого результата всегда возникает необходимость изменения или математической модели, или вычислительного метода, или алгоритма, или программы.

Следует подчеркнуть важность и таких этапов данной технологии решения задач на ПК, как проведение расчетов и анализ результатов. (А именно, подготовка исходных данных, обоснование выбора вычислительного метода, корректность и точность решения). Важным моментом является также экономичность выбора: способа решения задачи, численного метода, модели ПК, вычислительной среды.

Методы реализации математических моделей можно разделить на три группы:

1) графические;

2) аналитические;

3) численные.

Указанные методы используются как самостоятельно, так и совместно.

Графические методы позволяют оценивать порядок искомых величин и направление расчетных алгоритмов.

Аналитические методы (точные, приближенные) упрощают фрагментарные расчеты и позволяют успешно решать задачи оценки корректности и точности численных решений.

Основным инструментом реализации математических моделей являются численные методы, позволяющие свести решение задачи к вычислению конечного числа арифметических действий над числами и получение этого решения в виде числовых значений. Решение, получаемое численными методами, обычно является приближенным, т. е. содержит некоторую погрешность.