Вторичная электронная эмиссия

Вторичная электронная эмиссия может осуществляться как с нагретых, так и с холодных катодов. Катод, эмигрирующий ток вторичной электронной эмиссии, принято называть вторично-электронным катодом или эмиттером. Поверхность такого катода, подвергнутого бомбардировке заряженными частицами, обладающими значительной кинетической энергией, эмитирует электроны, которые называются вторичными; бомбардирующие электроны называются первичными. На рис. 1.6 показана возможная схема образования электронных потоков. Допустим, что первичные электроны в количестве получены с катода с помощью термоэлектронной эмиссии. Под действием разности потенциалов эти электроны направляются к вторично-электронному катоду и в ускоряющем электрическом поле получают энергию . Падая на вторично-электронный катод, они выбивают из него вторичных электронов. Ускоряющее поле отводит их на анод. Первичные электроны образуют ток , а вторичные — ток . Важнейшим параметром вторично-электронной эмиссии является коэффициент вторичной эмиссии

, (1.3)

который показывает, сколько вторичных электронов выбивается из поверхности катода одним первичным электроном. Коэффициент вторичной эмиссии равен отношению вторичного тока к первичному; он может принимать значения от близких к нулю до 10 и более раз в зависимости от материала эмиттера и ряда других причин, влияющих на эмиссию .

Вторичные электроны возникают благодаря обмену энергией между первичными электронами и электронами кристаллической решетки катода. Первичный электрон может терять свою энергию внутри эмиттера и поглощаться атомами решетки. Вторичные электроны также могут поглощаться атомами решетки до того, как они достигнут поверхности. Часть первичных электронов не входит в катод, а испытывает упругое отражение от его поверхности. Доля таких электронов по экспериментальным данным составляет 10 – 40%. Вторичные электроны, вылетевшие из катода, имеют малые значения энергии, т. е. являются медленными. Однако в общем потоке вторичного тока наблюдаются и быстрые электроны. Это – отраженные первичные электроны.

Коэффициент вторичной эмиссии зависит от материала эмиттера. Экспериментальные исследования показывают, что максимальный коэффициент вторичной эмиссии технически чистых металлов . Наибольшее значение имеют благородные металлы: золото, серебро, платина. Прямой причиной связи коэффициента вторичной эмиссии с величиной работы выхода не установлено. Работа выхода сама по себе играет незначительную роль во вторичной эмиссии; гораздо более важными являются другие свойства, такие, например, как плотность металла, способность его к окислению. Перечисленные благородные металлы имеют значительную работу выхода, однако значения у них высоки из-за отсутствия окислов на их поверхности. Кислород окислов является элементом, способным давать электроотрицательные ионы за счет поглощения вторичных электронов. Полупроводниковые вторично-электронные катоды имеют . Коэффициент вторичной эмиссии диэлектриков близок к единице.

Причину того, что металлы имеют значения , близкие к единице, тогда как полупроводников возрастает и, наконец, диэлектриков падает, можно искать в концентрации электронов в зоне проводимости. У металлов концентрация электронов велика, у полупроводников при комнатной температуре – значительно ниже, а у диэлектриков – ничтожна. В металлах из-за большой концентрации электронов большая часть энергии, полученной от первичных электронов при многочисленных столкновениях вторичных электронов с электронами проводимости, теряется. В полупроводниках вероятность столкновения вторичных электронов с электронами проводимости меньше, и поэтому «выход» вторичных электронов облегчен. В диэлектриках условия для выхода еще более «свободные». Однако в последнем случае из-за ничтожной концентрации электронов проводимости передача энергии первичных электронов к вторичным – редкое событие. Отсюда малое количество вторичных электронов и, следовательно, небольшой коэффициент вторичной эмиссии.

Коэффициент вторичной эмиссии зависит от скорости первичных электронов. На рис. 1.7 представлен график зависимости от для никеля. Как видно из графика, кривая имеет максимум при . У металлических катодов максимум выражен слабо, а у полупроводниковых – резко. Происхождение максимума объясняется тем, что до значения с увеличением скорости первичных электронов возрастает их энергия и глубина диффузии в катод. Вместе с этим увеличивается и число вторичных электронов, вылетающих с данной глубины. При значениях энергии, соответствующих , глубина проникновения в катод первичных электронов превосходит некоторую предельную, характерную для данного вещества, и коэффициент вторичной эмиссии уменьшается. С глубины, большей предельной, выход вторичных электронов затруднен вследствие большего размена энергии при большом количестве столкновений с электронами проводимости. Коэффициент вторичной эмиссии зависит также от угла падения первичных электронов на поверхность катода. Максимум получается при угле = 70°, отсчитываемом от нормали к поверхности катода.

Многочисленные экспериментальные исследования показали, что процесс передачи энергии не зависит (или почти не зависит) от температуры вторично-электронного катода.

Вторичная электронная эмиссия широко применяется в фотоэлектронных умножителях, специальных лампах, приемных и передающих телевизионных трубках, осциллографических и индикаторных электронно-лучевых трубках, а также в запоминающих трубках и других приборах . Однако при работе электронных ламп в определенных условиях вторичная эмиссия является нежелательной.