Клеточные включения — скопления запас иных питательных веществ: белков, жиров и углеводов.

Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним

организмам. Ядро — место синтеза ДНК. иРНК, рРНК.

ВОПРОС 2.

Формы естественного отбора

В природе естественный отбор, без сомнения, выступает как единый фактор, действующий в пределах популяций. Однако в зависимости от изменений условий среды и взаимодействия популяций и видов не только его направление, но и формы могут меняться. Механизм действия естественного отбора при этом остается неизменным — выживание и более эффективное размножение индивидуумов, наиболее приспособленных к конкретным условиям существования. Выделяют несколько форм отбора: — движущий — стабилизирующий — разрывающий.

Движущая форма отбора.Способствует сдвигу среднего значения признаков и появлению новых форм. Популяции, находящиеся достаточно долго в стабильных, мало меняющихся условиях, достигают высокой степени приспособленности и могут длительное время пребывать в равновесном состоянии, не испытывая значительных изменений генотипического состава. Однако изменение внешних условий может быстро привести к значительным сдвигам в генотипической структуре популяций. Яркий пример, доказывающий существование движущей формы естественного отбора, — так называемый индустриальный меланизм. Причина возрастания частоты встречаемости черных бабочек в промышленных районах состоит в том, что на потемневших стволах деревьев белые бабочки стали легкой добычей птиц, а черные бабочки, наоборот, стали менее заметными. Движущая форма естественного отбора приводит к закреплению новой нормы реакции организма, которая соответствует изменившимся условиям окружающей среды. Отбор всегда идет по фенотипам, но вместе с фенотипом отбираются и генотипы, их обусловливающие.

Стабилизирующая форма отбора. Стабилизирующая форма отбора направлена на сохранение установившегося в популяции среднего значения признака. Поскольку в любой популяции всегда существует мутационная изменчивость, то постоянно возникают особи с существенно отклоняющимися от среднего значения, типичного для популяции или вида, признаками они погибают. Во время бури преимущественно гибнут птицы с длинными и короткими крыльями, тогда как птицы со средним размером крыльев чаще выживают; наибольшая гибель детенышей млекопитающих наблюдается в семьях, размер которых больше и меньше среднего значения, поскольку это отражается на условиях кормления и на способности защищаться от врагов.

Разрывающий отбор. Отбор, благоприятствующий более чем одному фенотипическому оптимуму и действующий против промежуточных форм, называется дизруптивным, или разрывающим. Его можно объяснить на примере появления распогремка — раннецветущего и поздноцветущего. Их возникновение — результат покосов, осуществляемых в середине лета, которые уничтожают растения с промежуточными сроками цветения. Вследствие этого единая популяция разделяется на две не перекрывающиеся субпопуляции. Гибриды, возникающие между разными формами, не обладают достаточным сходством с несъедобными видами и активно потребляются птицами.

Творческая роль естественного отбора:В различных обстоятельствах естественный отбор может идти с различной интенсивностью. Дарвин отмечает обстоятельства, благоприятствующие естественному отбору:

— достаточно высокая частота проявления неопределенных наследственных изменений;

многочисленность особей вида, повышающая вероятность проявления полезных изменений;

— не родственное скрещивание, увеличивающее размах изменчивости в потомстве. Дарвин отмечает, что перекрестное опыление встречается изредка даже среди растений-самоопылителей;

изоляция группы особей, препятствующая их скрещиванию с остальной массой организмов данной популяции;

— широкое распространение вида, так как при этом на разных границах ареала особи встречаются с различными условиями и естественный отбор будет идти в разных направлениях и увеличивать внутривидовое разнообразие.




БИЛЕТ№ 7

ВОПРОС 1.

Обмен веществ и энергии в клетке. Главным условием жизни как организма в целом, так и отдельной клетки является обмен веществ и энергии с окружающей средой. Для поддержания сложной динамической структуры живой клетки требуется непрерывная затрата энергии. Кроме того, энергия необходима и для осуществления большинства функций клетки (поглощение веществ, двигательные реакции, биосинтез жизненно важных соединений). Источником энергии в этих случаях служит расщепление органических веществ в клетке.

Энергетический обмен в клетке. Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах. Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО2 и Н2О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы. Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО2 и Н2О.

Клеточное дыхание — это окисление органических веществ, приводящее к получению химической энергии (АТФ). Большинство клеток использует в первую очередь углеводы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносхаридов: Крахмал, Глюкоза (у растений)Гликоген (у животных) . Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Однако в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например, при длительном голодании.

Этапы энергетического обмена:Единый процесс энергетического обмена можно условно разделить на три последовательных этапа:

Первый этап: - расщепление органических вещ-в в пищеварительной системе до промежуточных продуктов распада.(гидролиз).

Белки + Н2О=аминокислота + тепло(рассеивается )

Жиры + Н2О = глицерин + жирные кислоты + тепло

Полисахариды + Н2О = глюкоза + тепло

Второй этап: (в клетке, в цитоплазме) – гликолиз – без кислородное расщепление глюкозы.Глюкоза под воздействием ферментов расщипляется до двух молекул С3Н6О3 С свыделением энергии.60% этой энергии рассеивается в виде тепла, 40% в виде АТФ.

Третий этап: (кислородное расщепление в митохондриях ) На кислородном этапе: с внутренней стороны мембраны крист находятся молекулы переносчики . Электрон подхватывается молекулами переносчиками и перетаскивается с одной молекулы на другую (окисление), при этом он теряет энергию. Эта энергия на восстановление АТФ из АДФ. Этот процесс называется окислительное фосфорилирование. В конце цепи переносчиков стоит кислород он является акцептором . Анионы накапливаются с внутренней стороны мембраны , ионы с наружной стороны . Когда разность потенциалов между ними достигнет критического уровня ион через ферментативный канал проходит на внутреннею сторону мембраны. При этом выделяется энергия, она идет на фосфолирирование (АДФ-АТФ). В итоге на кислородном этапе образуется 36 АТФ.

Пластический обмен. Ассимиляция. По типу ассимиляции все клетки делятся на две группы — автотрофные и гетеротрофные. Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединений за счет СО2, воды и энергии света (фотосинтез) или энергии, выделившейся при окислении неорганических соединений (хемосинтез). К автотрофам принадлежат все зеленые растения и некоторые бактерии. Гетеротрофные клетки не способны синтезировать органические вещества из неорганических. Эти клетки для жизнедеятельности нуждаются в поступлении органических соединений: углеводов, белков, жиров. Гетеротрофами являются все животные, большая часть бактерий, грибы, некоторые высшие растения — сапрофиты и паразиты, а также клетки растений, не содержащие хлорофилл.

Фотосинтез — синтез органических соединений, идущий за счет энергии солнечного излучения.

СВЕТОВАЯ ФАЗА : Во время световой фазы энергия солнечного света (или энергия искусственных источников света) улавливается зелеными растениями и превращается в химическую энергию, заключенную в органических веществах, богатых энергией (богатых энергией АТФ, НАДФ и т.д.). В последующем энергия этих богатых энергией соединений используется в клетке для процессов биосинтеза, которые могут происходить как на свету, так и в темноте.

Во время световой фазы фотосинтеза кванты света поглощаются электроном в молекуле хлорофилла. В результате один из электронов приобретает большой запас энергии и покидает хлорофилл. Эта энергия используется для синтеза АТФ и восстановления НАДФ, что приводит к образованию восстановленного никотинамйдадениндинук-леотидфосфата НАДФ Н. Вместе с тем солнечный свет приводит к фотолизу воды — разложению воды на ион водорода Н+ и ион гидроксила ОН- . Одновременно с этим ион гидроксила отдает свой электрон е. хлорофиллу, а возникающие радикалы ОН образуют воду и кислород Образующийся таким образом кислород выделяется зелеными растениями, что в течение многих сотен миллионов лет привело к созданию кислородной атмосферы Земли. В настоящее время зеленые растения продолжают непрерывно обогащать кислородом атмосферу нашей планеты.

Темновая фаза :фотосинтеза связана с использованием макроэргических веществ (АТФ, НАДФ • Н и некоторых других) для синтеза различных органических соединений (главным образом углеводов).

Цель: синтез органических веществ ,в строме (в полости хлоропластов )

СО2 связывается с производными рибозы с образованием глюкозы : 6 СО2 +18АТФ+ 12НАДФ*Н= С6Н12О6 .

Кроме фотосинтеза существует еще одна форма автотрофной ассимиляции — хемосинтез.

ВОПРОС 2.

Приспособленность организмов и ее относительность. Дарвин обратил внимание на одну черту эволюционного процесса — приспособительный характер. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками. Они обусловливают хорошую, но не абсолютную, приспособленность организмов к тем условиям, в которых живут.

Приспособленность к условиям среды может быть весьма совершенной, что повышает шансы организмов на выживание и оставление большого числа потомков. В это понятие входят не только внешние признаки, но и соответствие строения внутренних органов выполняемымимифункциям. Например, совершенны приспособления стрижа к полету, а дятла — к жизни в лесу.

Покровительственная окраска развита у видов, которые живут открыто и могут оказаться доступными для врагов. Такая окраска делает организмы менее заметными на фоне окружающей местности. Некоторые животные наделены ярким узором (окраска у зебры, тигра, жирафа, змей и т.д.) — чередованием светлых и темных полос и пятен. Эта расчленяющая окраска как бы имитирует чередование пятен света и тени и тоже делает животных менее заметными.

Маскировка. Маскировка — приспособление, при котором форма тела и окраска животных сливаются с окружающими предметами. Например, гусеницы некоторых бабочек по форме тела и окраске напоминают сучки. Насекомых, живущих на коре дерева (жуки, усачи и др.), можно принять за лишайники.

Мимикрия. Мимикрия — подражание менее защищенного организма одного вида более защищенному организму другого вида (или предметам среды). Это подражание может проявляться в форме тела, окраске и т.д. Так, некоторые виды неядовитых змей и насекомых похожи на ядовитых. Мимикрия — результат отбора сходных мутаций у различных видов. Она помогает незащищенным животным выжить, способствует сохранению организма в борьбе за существование.

Предупреждающая (угрожающая) окраска.Некоторые виды нередко обладают яркой, запоминающейся окраской. Раз попытавшись отведать несъедобную божью коровку, жалящую осу, птица на всю жизнь запомнит их яркую окраску. Некоторые животные демонстрируют угрожающую окраску лишь при нападении на них хищников.

Приспособления к экстремальным условиям существования. Растения, живущие в полупустынных и пустынных районах, имеют многочисленные и разнообразные адаптации. Это и уходящий на десятки метров в глубь земли корень, извлекающий воду, и резкое уменьшение испарения воды благодаря особому строению кутикулы на листьях, и полная утрата листьев и др.

Любая приспособленность помогает организмам выжить лишь в тех условиях, в которых она сформировалась. Следовательно, приспособленность носит относительный характер. В яркий солнечный день зимой белая куропатка выдает себя тенью на снегу. У многих животных имеются рудиментарные органы, то есть органы, утратившие свое приспособительное значение. В частности, рудиментарны пальцы у копытных и на задней конечности кита. Наличие рудиментов служит примером относительной целесообразности. Относительность приспособленности обеспечивает возможность дальнейшей перестройки и совершенствования имеющихся у данного вида адаптаций, то есть бесконечность эволюционного процесса.



БИЛЕТ№ 8

ВОПРОС 1.

Энергетический обмен в клетке . Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах. Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО2 и Н2О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы. Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО2 и Н2О.

Клеточное дыхание — это окисление органических веществ, приводящее к получению химической энергии (АТФ). Большинство клеток использует в первую очередь углеводы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов: Крахмал (у растений) ,Гликоген (у животных) . Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Однако в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров.

Этапы энергетического обмена

Единый процесс энергетического обмена можно условно разделить на три последовательных этапа:

Первый этап: - расщепление органических вещ-в в пищеварительной системе до промежуточных продуктов распада.(гидролиз).

Белки + Н2О=аминокислота + тепло(рассеивается )

Жиры + Н2О = глицерин + жирные кислоты + тепло

Полисахариды + Н2О = глюкоза + тепло

Второй этап: (в клетке, в цитоплазме) – гликолиз – без кислородное расщепление глюкозы.Глюкоза под воздействием ферментов расщипляется до двух молекул С3Н6О3 С свыделением энергии.60% этой энергии рассеивается в виде тепла, 40% в виде АТФ.

Третий этап: (кислородное расщепление в митохондриях ) На кислородном этапе: с внутренней стороны мембраны крист находятся молекулы переносчики . Электрон подхватывается молекулами переносчиками и перетаскивается с одной молекулы на другую (окисление), при этом он теряет энергию. Эта энергия на восстановление АТФ из АДФ. Этот процесс называется окислительное фосфорилирование. В конце цепи переносчиков стоит кислород он является акцептором . Анионы накапливаются с внутренней стороны мембраны , ионы с наружной стороны . Когда разность потенциалов между ними достигнет критического уровня ион через ферментативный канал проходит на внутреннею сторону мембраны. При этом выделяется энергия, она идет на фосфолирирование (АДФ-АТФ). В итоге на кислородном этапе образуется 36 АТФ.

ВОПРОС 2.

Дарвин подробно описал многообразие пород домашних животных и проанализировал их происхождение. Он отмечает, что человек сам создал многообразие пород и сортов культурных растений путем искусственного отбора, т.е. изменения в разных направлениях одного или нескольких родоначальных диких видов. Особенно подробно Дарвин исследовал происхождение пород домашнего голубя. Несмотря на большие различия, породы домашних голубей имеют очень важные общие признаки. Все домашние голуби — общественные птицы, гнездятся на зданиях, а не на деревьях, как дикие. Голуби разных пород легко скрещиваются и дают плодовитое потомство. При скрещивании особей, принадлежащих к разным породам, Дарвин получил потомство, по окраске удивительно сходное с диким (скалистым) голубем. Таким образом, было показано, что в процессе одомашнивания человек может добиться больших изменений у растений и животных. Ученый сделал вывод, что все породы домашних голубей произошли от одного вида — дикого сизого (скалистого) голубя.

Дарвин различает два вида искусственного отбора — методический (сознательный) и бессознательный.

Бессознательный отбор — это отбор, направленный на улучшение породы или сорта, когда не ставится задача вывести совершенно новый сорт или породу. Например, хозяйка использует на мясо плохих несушек, а яйценоских кур оставляет, то есть идет частичная выбраковка.

Методический отбор заключается в научной разработке всей селекционной работы. Используя этот метод, селекционер, как скульптор, лепит новые органические формы по заранее продуманному плану.

Естественный отбор .Великая заслуга Ч. Дарвина состоит в открытии роли отбора как направляющего и движущего фактора эволюционного процесса. Благодаря мутационному процессу, колебанию численности и изоляции возникает генетическая неоднородность внутри вида. Дарвин считал, что благодаря естественному отбору осуществляется процесс сохранения и преимущественного размножения организмов, которые обладают признаками, наиболее полезными в данных условиях окружающей среды. Естественный отбор — результат борьбы за существование, под которой понимают отклонения особей внутри видов, между видами, а также влияние природно-климатических факторов.




БИЛЕТ№9

ВОПРОС 1.

Биосинтез белка .Информационная РНК, несущая сведения о первичной структуре белковых молекул, синтезируется в ядре. Пройдя через поры ядерной оболочки, и-РНК направляется к рибосомам, где осуществляется расшифровка генетической информации — перевод ее с «языка» нуклеотидов на «язык» аминокислот. Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (т-РНК). В т-РНК последовательность трех нуклеотидов комплементарна нуклеотидам кодона в и-РНК. Такая последовательность нуклеотидов в структуре т-РНК называется антикодоном. Каждая т-РНК присоединяет определенную, «свою» аминокислоту, при помощи ферментов и с затратой АТФ. В этом состоитпервыйэтап синтеза. Для того чтобы аминокислота включилась в цепь белка, она должна оторваться от т-РНК. Навторомэтапе синтеза белка т-РНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот. Такой перевод происходит на рибосоме. В ней имеется два участка: на одном т-РНК получает команду от и-РНК — антикодон узнает кодон, на другом — выполняется приказ — аминокислота отрывается от т-РНК.

Третий этап синтеза белка заключается в том, что фермент синтетаза присоединяет оторвавшуюся от т-РНК аминокислоту к растущей белковой молекуле. Информационная РНК непрерывно скользит по рибосоме, каждый триплет сначала попадает в первый участок, где узнается антикодоном т-РНК, затем на второй участок. Сюда же переходит т-РНК с присоединенной к ней аминокислотой, здесь аминокислоты отрываются от т-РНК и соединяются друг с другом в той последовательности, в которой триплеты следуют один за другим.

Когда на рибосоме в первом участке оказывается один из трех триплетов, являющихся знаками препинания между генами, это означает, что синтез белка завершен. Готовая цепь белка отходит от рибосомы. Процесс синтеза белковой молекулы требует больших затрат энергии. На соединение каждой аминокислоты с т-РНК расходуется энергия одной молекулы АТФ. Для увеличения производства белков и-РНК часто одновременно проходит не через одну, а через несколько рибосом последовательно. Такую структуру, объединенную одной молекулой и-РНК, называют полисомой. На каждой рибосоме в таком, похожем на нитку бус, конвейере последовательно синтезируются несколько молекул одинаковых белков. Синтезированные белки поступают в каналы эндоплазматической сети, по которым транспортируются к определенным участкам клетки.

ВОПРОС 2.

Изоляция — эволюционный фактор.Изоляция — возникновение любых барьеров, нарушающих свободное скрещивание, что ведет к увеличению и закреплению различий между популяциями и отдельными частями всего населения. Различают географическую, экологическую, а также этологическую изоляцию.

Географическая (или пространственная) изоляция связана с разрывом единого ареала обитания вида на не сообщающиеся между собой части. В каждой изолированной популяции могут случайно возникать мутации. Вследствие дрейфа генов и действия естественного отбора генотипический состав изолированных популяций различается все больше и больше. Причины, ведущие к возникновению географической изоляции, многочисленны: это наличие гор и рек, перешейков или проливов, истребление популяций в определенных районах и т.д.

Экологическая изоляция связана с предпочтением конкретного место обитания. Севанская форель — пример такой изоляции. Разные популяции форели нерестятся в устьях различных ручьев и горных рек, впадающих в озеро, поэтому свободное скрещивание между ними крайне затруднено. Экологическая изоляция, таким образом, препятствует скрещиванию особей из разных популяций и служит так же, как и географическая изоляция, начальным этапом расхождения популяций.

Эволюционная суть различных вариантов пространственной и экологической изоляции одинакова — разрыв единого генофонда вида на два либо большее число изолированных друг от друга генофондов (прекращение обмена между ними генетическим материалом; независимое протекание в изолированных частях вида эволюционного процесса). Его конечным результатом, хотя и с небольшой вероятностью, становится образование новых видов. Именно поэтому первичные формы изоляции рассматривают как пусковые механизмы видообразовательного процесса.




БИЛЕТ№10

ВОПРОС 1.

Фотосинтез. Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах.

Автотрофы – организмы синтезирующие органические вещества из неорганических (Растения, некоторые бактерии) Гетеротрофы – организмы потребляющие органические вещества в готовом виде(животные, грибы). Молекулы хлорофила могут поглощать солнечные лучи разной длинны

Первый этап (световой) происходит в тиланойдах, цель: образование аккумуляторов энергии: АТФ и НАДФ*Н (никатинамиддинуклеатидфосфат*Н)

Молекула хлорофила 1 , поглощает квант света, при этом из неё выбивается электрон, он переходит на более высокий энергетический уровень, а затем подхватывается молекулами переносчиками. Электрон перескакивает с одного переносчика на другой теряя энергию, эта энергия идет на фосфорилированиена (месте электрона образуется дырка ). В конце переносчиков электрон подхватывается НАДФ+. Молекула хлорофила 2 под воздействием кванта света теряет электрон (дырка). Электрон подхватывается молекулами переносчиками, теряет энергию(на синтез АТФ). Электрон идет в хлорофил 1 (закрывает дырку). Под воздействием кванта света идет фотолиз воды. Водород идет к НАДФ, а электрон в дырку 2. Итог: синтез АТФ,НАДФ*Н и молекулярный кислород.

Второй этап(темновой). Цель: синтез органических веществ. Где: строме (в полости хлоропластов.) Углекислый газ связывается с производными рибозы с образованием глюкозы

6CO2

18АТФ С6Н12О6 (ГЛЮКОЗА)

12НАДФ*Н

Значение фотосинтеза:

1 Насыщение атмосферы кислородом

2 Поглощение углекислого газа из атмосферы

3 Первичный источник органических веществ на планете – растения

4 Космическая роль зеленых растений: преобразуют солнечную энергию, в энергию химических связей органических веществ (доступную всем живым организмам)

ВОПРОС 2.

Подавляющее большинство ныне живущих организмов состоит из клеток. Лишь немногие примитивнейшие организмы — вирусы и фаги — не имеют клеточного строения. По этому важнейшему признаку все живое делится на две империи — доклеточных (вирусы и фаги) и клеточных (сюда относятся все остальные организмы: бактерии и близкие к ним группы; грибы; зеленые растения и животные). Современная биология признает разделение на пять царств, прокариот, или дробянок, зеленых растений, грибов, животных ,отдельно выделяется царство вирусов — доклеточных форм жизни.

Вирусы и фаги. Империя доклеточных состоит из единственного царства — вирусов. Это мельчайшие организмы, их размеры колеблются от 12 до 500 мкм. Мелкие вирусы равны крупным молекулам белка. Вирусы — паразиты клеток. Вирусы бактерий называют фагами или бактериофагами. Вирусы принципиально отличаются от всех других организмов. Вот важнейшие особенности доклеточных: 1. Они могут существовать только как внутриклеточные паразиты и не могут размножаться вне клеток тех организмов, в которых паразитируют. 2. Содержат лишь один из типов нуклеиновых кислот — либо РНК, либо ДНК (все клеточные организмы содержат и ДНК, и РНК одновременно). 3. Имеют очень ограниченное число ферментов, используют обмен веществ хозяина, его ферменты, энергию, полученную при обмене веществ в клетках хозяина.

Прокариоты (дробянки). К прокариотам относят наиболее просто устроенные формы клеточных организмов. Сине-зеленые. В клетках сине-зеленых нет ядра, вакуолей, отсутствует половое размножение, что резко отличает их от низших растений . Сине-зеленые замечательны тем, что способны усваивать азот воздуха и превращать его в органические формы азота. При фотосинтезе они используют углекислый газ, выделяя молекулярный кислород. Они могут использовать как солнечную энергию (автотрофность), так и энергию, выделяющуюся при расщеплении готовых органических веществ (ге-теротрофность).

Бактерии. Большинство бактерий получает энергию, используя органические вещества, незначительная часть способна утилизировать солнечную энергию. Микроорганизмы играют огромную роль в биологическом круговороте веществ в природе и хозяйственной жизни человека. Изготовление простокваши, кефира, ацидофилина, творога, сметаны, сыров, уксуса немыслимо без действия бактерий. В настоящее время многие микроорганизмы используются для промышленного получения нужных человеку веществ. Микробиологическая промышленность стала важной отраслью производства. Печальную известность получили паразитические бактерии — возбудители опаснейших заболеваний человека: чумы, холеры, туберкулеза, дизентерии и множества других заболеваний. Вирусы и бактерии — основные возбудители инфекционных заболеваний.

Эукариоты. Все остальные организмы относят к ядерным, или эукариотам. Основные признаки эукариот показаны в таблице. Эукариоты делятся на три царства: зеленые растения, грибы и животные.

Зеленые растения. Сюда относят зеленые растения с автотрофным питанием. Очень редко встречается гетеротрофность (например, у насекомоядного растения росянки и у паразитического растения омелы). Всегда есть пластиды. Клетки, как правило, имеют наружную оболочку из целлюлозы.

Грибы. Среди грибов различают разнообразные формы: хлебную плесень, плесневый грибок пенициллум, ржавчинные грибы, шляпочные грибы, трутовики. Общей особенностью для столь разнообразных форм является образование вегетативного тела гриба из тонких ветвящихся нитей, образующих грибницу.

Животные Все животные — гетеротрофные организмы. Они активно добывают органические вещества, поедая те или иные, как правило, живые организмы. Добыча такого корма требует подвижности. С этим и связано развитие разнообразных органов движения (например, ложноножки амебы, реснички инфузорий, крылья насекомых, плавники рыб и т. д.,). Быстрые движения невозможны без наличия подвижного скелета, к которому крепится мускулатура. Так возникает наружный хитиновый скелет членистоногих, внутренний костный скелет позвоночных. С подвижностью связана и другая важная особенность животных: клетка животных лишена плотной наружной оболочки, сохраняя лишь внутреннюю цитоплазматическую мембранную оболочку. Наличие в клетке животных нерастворимых в воде твердых запасающих веществ (например, крахмала) препятствовало бы подвижности клетки. Вот почему основным запасающим веществом у животных является легкорастворимый полисахарид — гликоген.




БИЛЕТ№11

ВОПРОС 1.

Вирусы— это неклеточная форма жизни. Они могут функционировать только внутри одно- или многоклеточного организма. Вирусы были открыты в 1892 г. Д.И.Ивановским при исследовании мозаичной болезни листьев табака. Вирусы не имеют цитоплазмы, клеточных органоидов, собственного обмена веществ.

Вирусы — инфекционные агентыНи один из известных вирусов не способен к самостоятельному существованию. Лишь попав в клетку, генетический материал вируса воспроизводится, переключая работу клеточных биохимических конвейеров на производство вирусных белков: как ферментов, необходимых для репликации вирусного генома — всей совокупности его генов, так и белков оболочки вируса. В клетке же происходит и сборка из нуклеиновых кислот и белков многочисленных потомков одного попавшего в нее вируса. В зависимости от длительности пребывания вируса в клетке и характера изменения ее функционирования различают три типа вирусной инфекции. Если образующие вирусы одновременно покидают клетку, то она разрывается и гибнет. Вышедшие из нее вирусы поражают новые клетки. Так развивается литическая инфекция.

Строение вирусовВне зависимости от типа инфекции и характера заболевания все вирусы можно рассматривать как генетические элементы, одетые в защитную белковую оболочку и способные переходить из одной клетки в другую. Отдельные вирусные частицы — вирионы — представляют собой симметричные тела, состоящие из повторяющихся элементов. В сердцевине каждого вириона находится генетический материал, представленный молекулами ДНК или РНК. Велико разнообразие форм этих молекул: есть вирусы, содержащие двух цепочечную ДНК в кольцевой или линейной форме; вирусы с одно-цепочечной кольцевой ДНК; одно-цепочечной или двух цепочечной РНК; содержащие две идентичные одно-цепочечные РНК. Генетический материал вируса (геном) окружен капсидом — белковой оболочкой, защищающей его как от действия нуклеаз — ферментов, разрушающих нуклеиновые кислоты, так и от воздействия ультрафиолетового излучения. Капсиды состоят из многократно повторенных полипептидных цепей одного или нескольких типов белков. В основе взаимодействия вирусных белков друг с другом и с нуклеиновой кислотой лежит закон термодинамики, гласящий, что устойчивость системы приобретается при достижении минимального уровня свободной энергии. Для каждого вируса существует свой набор белков, который при сборке вириона дает оптимальную в энергетическом плане форму капсида. Большинство вирусов построены по одному из двух типов симметрии — спиральной или кубической.

Проникновение вируса в клеткуВирусы растений, клетки которых кроме мембраны защищены прочной оболочкой из клетчатки, могут проникнуть в них лишь в местах механических повреждений. Разносчиками этих вирусов могут быть членистоногие — насекомые вроде тлей и клещи с сосущим ротовым аппаратом. Они переносят ририоны на своих хоботках. И у человека переносчиками вирусных болезней могут быть москиты (желтая лихорадка), комары (японский энцефалит) или клещи (таежный энцефалит). Безоболочечные клетки животных, защищенные одной мембраной, более уязвимы для вирусов в первую очередь из-за своей способности к фаго- и пиноцитозу. Захватывая питательные вещества, они часто «проглатывают» и вирионы. Если клетки соединены друг с другом, как клетки нервной системы, вирус может путешествовать по этим контактам, заражая одну клетку задругой. Обычно это медленный процесс (так происходит заражение, например, после укуса бешеного животного). Наконец, у многих вирусов развиваются специальные приспособления для проникновения в клетку. Клетки, выстилающие дыхательные пути, покрыты защитным слоем слизи. Но вирус гриппа разжижает слизь и проникает к мембране (потому-то часто первый симптом гриппа — насморк).

Определенную группу представляют вирусы бактерий — бактериофаги, или фаги, которые способны проникать в бактериальную клетку. Сначала бактериофаг прикрепляется к поверхности клетки и растворяет в этом месте оболочку бактерии. Дальше у бактерии, зараженной бактериофагом, начинает синтезироваться ДНК бактериофага, а не собственная ДНК бактерии, и в конечном итоге бактерия погибает. Поселяясь в клетках живых организмов, вирусы вызывают многие опасные заболевания растений (мозаичная болезнь томатов, огурцов; скручивание листьев и др.) и домашних животных (ящур, чума свиней и птиц и т.д.), что резко снижает урожайность культур и приводит к массовой гибели животных. Вирусы вызывают опасные заболевания у человека (корь, оспа, полиомиелит и др.). В последние годы к ним прибавилось еще одно заболевание — СПИД (синдром приобретенного иммунодефицита). Болезнь поражает преимущественно иммунную систему, которая осуществляет защиту организма от различных болезнетворных агентов. Возбудитель болезни — вирус иммунодефицита человека (ВИЧ) — размножается главным образом в клетках этой системы, в результате чего организм становится беззащитным к микробам, в обычных условиях не вызывающим заболевания. ВИЧ обладает уникальной изменчивостью, которая более чем в 100 раз превышает изменчивость вируса гриппа. Поэтому вакцина, приготовленная против одной формы ВИЧ, может оказаться неэффективной против другой. Предполагается, что ВИЧ может сохраняться в организме человека пожизненно. Это значит, что до конца своей жизни инфицированные люди могут заражать других. Возможны пути заражения при переливании крови, пересадке органов, половых контактах.

Происхождение вирусов в процессе эволюции пока не ясно. Предполагается, что вирусы представляют собой сильно дегенерировавшие клетки или их фрагменты, которые в ходе приспособления к паразитизму утратили все, без чего можно обойтись, за исключением своей наследственной информации и защитной белковой оболочки.

ВОПРОС 2.

Развитие представлений о возникновении жизни. Теория возникновения жизни на Земле. С глубокой древности и до нашего времени было высказано бессчетное количество гипотез о происхождении жизни на Земле. Все их многообразие сводится к двум взаимоисключающим точкам зрения. Сторонники теории биогенеза (от греч. «био» — жизнь и «генезис» — происхождение) полагали, что все живое происходит только от живого. Их противники защищали теорию абиогенеза («а» — лат. отрицательная приставка); они считали возможным происхождение живого из неживого.

Против теории самозарождения в XVII в. выступил флорентийский врач Франческо Реди. Положив мясо в закрытый горшок, Ф.Реди показал, что в гнилом мясе личинки мясной мухи не само зарождаются. Сторонники теории самозарождения не сдавались, они утверждали, что самозарождение личинок не произошло по той лишь причине, что в закрытый горшок не поступал воздух. Тогда Ф.Реди поместил кусочки мяса в несколько глубоких сосудов. Часть из них оставил открытыми, а часть прикрыл кисеей. Через некоторое время в открытых сосудах мясо кишело личинками мух, тогда как в сосудах, прикрытых кисеей, в гнилом мясе никаких личинок не было. В XVIII в. теорию самозарождения жизни продолжал защищать немецкий математик и философ Лейбниц. Он и его сторонники утверждали, что в живых организмах существует особая «жизненная сила». По мнению виталистов (от лат. «вита» — жизнь), «жизненная сила» присутствует всюду. Достаточно лишь вдохнуть ее, и неживое станет живым. Микроскоп открыл людям микромир. Наблюдения показывали, что в плотно закрытой колбе с мясным бульоном или сенным настоем через некоторое время обнаруживаются микроорганизмы. Но стоило прокипятить мясной бульон в течение часа и запаять горлышко, как в запаянной колбе ничего не возникало. Виталисты выдвинули предположение, что длительное кипячение убивает «жизненную силу», которая не может проникнуть в запаянную колбу.

Эксперимент Пастера. Французская Академия наук в 1859 г. назначила специальную премию за попытку осветить по-новому вопрос о самопроизвольном зарождении. Эту премию в 1862 году получил знаменитый французский ученый Луи Пастер. Пастер провел эксперимент, соперничавший по простоте со знаменитым опытом Реди. Он кипятил в колбе различные питательные среды, в которых могли развиваться микроорганизмы. При длительном кипячении в колбе погибали не только микроорганизмы, но и их споры. Помня об утверждении виталистов, что мифическая «жизненная сила» не может проникнуть в запаянную колбу, Пастер присоединил к ней S-образную трубку со свободным концом. Споры микроорганизмов оседали на поверхности тонкой изогнутой трубки и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не наблюдалось самозарождения микроорганизмов, хотя доступ воздуха (а с ним и пресловутой «жизненной силы») был обеспечен. Пастер своими опытами доказал невозможность самопроизвольного зарождения жизни. Представлениям о «жизненной силе» — витализму — был нанесен сокрушительный удар.

Абиогенный синтез органических веществ. Эксперимент Пастера продемонстрировал невозможность самопроизвольного зарождения жизни в обычных условиях. Вопрос о возникновении жизни на нашей планете долгое время еще оставался открытым. В 1924 г. известный биохимик академик А.И. Опарин высказал предположение, что при мощных электрических разрядах в атмосфере Земли, которая 4-4,5 млрд. лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Предсказание А.И. Опарина оправдались. В 1955 г. американский исследователь С.Миллер, пропуская электрические разряды напряжением до 60000 В через смесь СН4, NH3, H2 и паров H2O под давлением в несколько паскалей при температуре +80°С, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот, в том числе глицин и аланин. Аминокислоты — это те «кирпичики», из которых построены молекулы белков. Поэтому экспериментальное доказательство возможности образования аминокислот и неорганических соединений — чрезвычайно важное указание на то, что первым шагом на пути возникновения жизни на Земле был абиогенный (небиологический) синтез органических веществ.




БИЛЕТ№12

ВОПРОС 1.

Деление клеток. Митоз.Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается количество ДНК. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки — митоз. Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.

Различают 4 фазы митоза: профаза, метафаза, анафаза и телофаза.

В профазе спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке. В цитоплазме к концу профазы центриоли отходят к полюсам и образуют веретено деления. В метафазе происходит дальнейшая спирализация хромосом. В эту фазу они наиболее видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки. В телофазе цитоплазма делится, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных — в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образуются две новые — дочерние, с диплоидным набором хромосом.

ВОПРОС 2.

Современные взгляды на возникновение жизни ,Гипотеза А.И.Опарина. Наиболее существенная черта гипотезы А.И.Опарина — постепенное усложнение химической структуры и морфологического облика предшественников жизни (предбионтов) на пути к живым организмам.

Большое количество данных говорит о том, что средой возникновения жизни могли быть прибрежные районы морей и океанов. Здесь, на стыке моря, суши и воздуха, создавались благоприятные условия для образования сложных органических соединений. Например, растворы некоторых органических веществ (Сахаров, спиртов) обладают большой устойчивостью и могут существовать неограниченно долгое время. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина. Такие сгустки называют коацерватными каплями, или коацерватами. Коацерваты способны адсорбировать различные вещества. Из раствора в них поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду. Коацерваты — это еще не живые существа. Они проявляют лишь внешнее сходство с такими признакамиживых организмов, как рост и обмен веществ с окружающей средой. Поэтому возникновение коацерватов рассматривают как стадию развития преджизни. Коацерваты претерпели очень длительный отбор на устойчивость структуры. Устойчивость была достигнута вследствие создания ферментов, контролирующих синтез тех или иных соединений. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки-ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни, — способность к воспроизведению подобных себе молекул. Живые существа представляют собой так называемые открытые системы, то есть системы, в которые энергия поступает извне. Без поступления энергии жизнь существовать не может. Как вы знаете, по способам потребления энергии организмы делятся на две большие группы: автотрофные и гетеротрофные. Автотрофные организмы прямо используют солнечную энергию в процессе фотосинтеза (зеленые растения), гетеротрофные используют энергию, которая выделяется при распаде органических веществ. Очевидно, первые организмы были гетеротрофными, получающими энергию путем бескислородного расщепления органических соединений. На заре жизни в атмосфере Земли не было свободного кислорода. Возникновение атмосферы современного химического состава теснейшим образом связано с развитием жизни. Появление организмов, способных к фотосинтезу, привело к выделению в атмосферу и воду кислорода. В его присутствии стало возможным кислородное расщепление органических веществ, при котором получается во много раз больше энергии, чем при бескислородном. В 1924 г. известный биохимик академик А.И. Опарин высказал предположение, что при мощных электрических разрядах в атмосфере Земли, которая 4-4,5 млрд. лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Предсказание А.И. Опарина оправдались. В 1955 г. американский исследователь С.Миллер, пропуская электрические разряды напряжением до 60000 В через смесь СН4, NH3, H2 и паров H2O под давлением в несколько паскалей при температуре +80°С, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот, в том числе глицин и аланин. Аминокислоты — это те «кирпичики», из которых построены молекулы белков. Поэтому экспериментальное доказательство возможности образования аминокислот и неорганических соединений — чрезвычайно важное указание на то, что первым шагом на пути возникновения жизни на Земле был абиогенный (небиологический) синтез органических веществ.




БИЛЕТ№13

ВОПРОС 1.

Мейоз. Половое размножение животных, растений и грибов связано с формированием специализированных половых клеток. Особый тип деления клеток, в результате которого образуются половые клетки, называют мейозом. В отличие от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.

Процесс мейоза состоит из двух последовательных клеточных делений — мейоза 1 (первое деление) и мейоза 2 (второе деление). Удвоение ДНК и хромосом происходит только перед мейозом 1. В результате первого деления мейоза образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2п), набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (п), набор хромосом и соответственно вдвое меньшее количество ДНК. Оба деления мейоза включают те же фазы, что и митоз: профазу, метафазу, анафазу, телофазу.

В профазе первого деления мейоза происходит спирализация хромосом. В конце профазы, когда спирализация заканчивается, хромосомы приобретают характерные для них форму и размеры. Хромосомы каждой пары, т.е. гомологичные, соединяются друг с другом по всей длине и скручиваются. Этот процесс соединения гомологичных хромосом носит название конъюгации. Во время конъюгации между некоторыми гомологичными хромосомами происходит обмен участками — генами (кроссинговер), что означает обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга. Когда хромосомы полностью разъединяются, образуется веретено деления, наступает метафазамейоза и хромосомы располагаются в плоскости экватора. Затем наступает анафазамейоза, и к полюсам клетки отходят не половинки каждой хромосомы, включающие одну хроматиду, как при митозе, а целые хромосомы, каждая из которых состоит из двух хроматид. Следовательно, в дочернюю клетку попадает только одна из каждой пары гомологичных хромосом.

Вслед за первым делением наступает второе деление мейоза, причем этому делению не предшествует синтез ДНК. Интерфаза перед вторым делением очень короткая. Профаза 2 непродолжительна. В метафазе 2 хромосомы выстраиваются в экваториальной плоскости клетки. В анафазе 2 осуществляется разделение их центромер и каждая хроматида становится самостоятельной хромосомой. В телофазе 2 завершается расхождение сестринских хромосом к полюсам и наступает деление клетки. В результате из двух гаплоидных клеток образуются четыре гаплоидные дочерние клетки. Происходящий в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяет закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома.

ВОПРОС 2.

Ароморфоз — крупное эволюционное изменение. Оно обеспечивает повышение уровня организации организмов, преимущества в борьбе за существование, возможность освоения новых сред обитания. Факторы, вызывающие ароморфозы, — наследственная изменчивость, борьба за существование и естественный отбор. Основные ароморфозы в эволюции многоклеточных животных:

1) появление многоклеточных животных от одноклеточных, дифференциация клеток и образование тканей;

2) формирование у животных двусторонней симметрии, передней и задней частей тела, брюшной и спинной сторон тела в связи с разделением функций в организме (ориентация в пространстве — передняя часть, защитная — спинная сторона, передвижение — брюшная сторона);

3) возникновение бесчерепных, подобных современному ланцетнику, панцирных рыб с костными челюстями, позволяющими активно охотиться и справляться с добычей:

4) возникновение легких и появление легочного дыхания наряду с жаберным;

5) формирование скелета плавников с мышцами, подобных пятипалой конечности наземных позвоночных, позволившими животным не только плавать, но и ползать по дну, передвигаться по суше;

6) усложнение кровеносной системы от двухкамерного сердца, одного круга кровообращения у рыб до четырех камерного сердца, двух кругов кровообращения у птиц и млекопитающих. Развитие нервной системы: паутинообразная у кишечно-полостных, брюшная цепочка у кольчатых червей,

трубчатая нервная система, значительное развитие больших полушарий и коры головного мозга у птиц, человека и других млекопитающих. Усложнение органов дыхания (жабры у рыб, легкие у наземных позвоночных, появление у человека и других млекопитающих в легких множества ячеек, оплетенных сетью капилляров).

Возникновение в клетках хлоропластов с хлорофиллом, фотосинтеза — важный ароморфоз эволюции органического мира, обеспечивший все живое пищей и энергией, кислородом. Дальнейшее усложнение растений в процессе эволюции: появление корней, листьев, развитого стебля, тканей, позволивших им освоить сушу (папоротники, хвощи, плауны). Ароморфозы, способствующие усложнению растений в процессе эволюции: возникновение семени, цветка и плода (переход семенных растений от размножения спорами к размножению семенами). Спора — одна специализированная клетка, семя — зачаток нового растения с запасом питательных веществ. Преимущества размножения растений семенами — уменьшение зависимости процесса размножения от окружающих условий и повышение выживаемости.



БИЛЕТ№14

ВОПРОС 1.

Формы размножения организмов ( БЕСПОЛОЕ.) Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Оно приводит к увеличению численности особей вида и способствует его расселению. У растений, подавляющее большинство которых ведет прикрепленный образ жизни, расселение в процессе размножения — единственный способ занять большую территорию обитания. У большинства многоклеточных организмов часть клеток специализировалась на выполнении функции размножения, возникли репродуктивные органы. В них образуются клетки, способные дать начало новому организму. Если новый организм возникает из половых клеток, то говорят о половом размножении. Если же образование нового организма связано с соматическими клетками, то такой способ размножения называют бесполым.

Бесполое размножение характеризуется тем, что в нем участвует одна особь. В некоторых случаях для воспроизводства потомства образуются специализированные клетки — споры, каждая из которых прорастает и дает начало новому организму. Спорообразование встречается у простейших (малярийный плазмодий), грибов, водорослей и лишайников.

Вегетативное размножение. Размножение при помощи вегетативных органов (у растений) и частей тела (у животных) называется вегетативным. Оно основано на способности организмов восстанавливать (регенерировать) недостающие части. Этот способ размножения широко распространен в природе, но с наибольшим разнообразием оно осуществляется у растений, особенно у цветковых. При делении путем митоза одноклеточных бактерий, водорослей, простейших образуются два дочерних организма. У одноклеточных водорослей, грибов и лишайников размножение осуществляется соответственно обрывками нитей, гиф и обломками слоевищ. Примером вегетативного размножения может служить почкование. Оно характерно для некоторых кишечно-полостных (гидры) и дрожжевых грибков. Если при этом дочерние особи не отделяются от материнской, могут возникать колонии. У цветковых растений в природе новые особи могут возникать из вегетативных органов: стебля (кактусы, ряска, элодея), листа (фиалка, бегония), корня (малина, осот), видоизмененных побегов: клубня (картофель), луковицы (лук, чеснок, тюльпан), корневища (пырей, хвощ), усов (земляника). Вегетативное размножение растений широко используются в с/х практике. Вегетативным путем удается размножать далеко не все растения. Ученые изучают механизмы размножения для того, чтобы научиться управлять ими. Используя клеточные культуры, можно вначале размножить клетки с нужной наследственной информацией, а затем вырастить из них целое растение. У многоклеточных животных в силу высокой специализации клеток организма размножение встречается значительно реже. Кроме кишечнополостных оно наблюдается у губок, плоских червей. При любой форме бесполого размножения — частями тела или спорами — наблюдается увеличение численности особей данного вида без повышения их генетического разнообразия: все особи являются точной копией материнского организма. Эта особенность используется человеком для получения однородного, с хорошими признаками потомства плодово-ягодных, декоративных и других групп растений. Новые признаки у таких организмов появляются только в результате мутаций.

ВОПРОС 2.

Движущие силы антропогенеза. Дарвин показал, что основные факторы эволюции органического мира, то есть наследственная изменчивость, борьба за существование и естественный отбор, приложимы и к эволюции человека. Благодаря им организм древней человекообразной обезьяны претерпел ряд морфофизиологических изменений, в результате которых выработалась вертикальная походка, разделились функции рук и ног. Для объяснения антропогенеза недостаточно одних биологических закономерностей. Качественное своеобразие его вскрыл Ф.Энгельс, указав на социальные факторы: труд, общественную жизнь, сознание и речь. Труд — важнейший фактор эволюции человека. Основной движущей силой антропогенеза явился труд, в процессе которого человек сам создает орудия труда. Наиболее высокоорганизованные животные могут употреблять предметы в качестве готовых орудий, но не способны создать их. Животные только пользуются дарами природы, человек же изменяет ее в процессе труда. Животные также изменяют природу, но не преднамеренно, а лишь потому, что находятся и живут в природе. Их воздействие на природу сравнительно с воздействием на нее человека ничтожно.

Морфологические и физиологические преобразования наших обезьяноподобных предков правильнее будет назвать антропоморфозами, так как вызвавший их основной фактор — труд — был специфичен только для эволюции человека. Особенно важным было возникновение прямой походки. Размеры и масса тела обезьян увеличились, возник S-образный изгиб позвоночного столба, придавший ему гибкость, образовалась сводчатая пружинящая стопа, расширился таз, упрочился крестец, челюстной аппарат стал более легким и т.д. Прямохождение установилось не сразу. Это был весьма длительный процесс отбора наследственных изменений, полезных в трудовой деятельности. Предположительно он длился миллионы лет. Биологически прямохождение принесло человеку немало осложнений. Оно ограничило быстроту его передвижения, лишило подвижности крестец, что затруднило роды; длительное стояние и ношение тяжестей иногда приводит к плоскостопию и расширению вен на ногах. Зато благодаря прямохождению освободились руки для орудий труда. Возникновение прямохождения, по мнению Ч.Дарвина, а затем Ф.Энгельса, стало решающим шагом на пути от обезьяны к человеку. Благодаря прямохождению у обезьяноподобных предков человека руки освободились от необходимости поддерживать тело при передвижении по земле и приобрели способность к разнообразным движениям.

Общественный образ жизни как фактор эволюции человека. С самого начала труд был общественным, так как обезьяны жили стадами. Ф.Энгельс указывал, что неправильно было бы искать предков человека, самого общественного существа в природе, среди необщественных животных. Стадность обезьяньих предков человека развивалась в общественное поведение под воздействием особого фактора. Таким фактором был труд, тесно связанный с преобразованием руки в орган труда. Труд способствовал сплочению членов общества; они коллективно защищались от зверей, охотились и воспитывали детей. Старшие члены общества обучали младших отыскивать природные материалы и изготовлять орудия, учили приемам охоты и сохранения огня. С развитием трудового процесса все яснее становилась польза взаимной поддержки и взаимопомощи. Древнейшие орудия охоты и рыбной ловли свидетельствуют о том, что наши предки уже на ранних стадиях употребляли мясную пищу. Обработанная и приготовленная на огне, она уменьшала нагрузку на жевательный аппарат. Теменной гребень, к которому у обезьян прикрепляются мощные жевательные , потерял свое биологическое значение, сделался бесполезным и постепенно исчез в процессе естественного отбора; по той же причине переход от растительной пищи к смешанной привел к укорочению кишечника. Применение огня помогало защищаться от холода и зверей.

Накапливаемый жизненный опыт в познании природы совершенствовался от поколения к поколению. При жизни обществом имелись большие возможности для общения друг с другом: совместная деятельность членов общества вызвала необходимость сигнализации жестами, звуками. Первые слова были связаны с трудовыми операциями и обозначали действие, работу, а названия предметов появились позднее. Неразвитая гортань и ротовой аппарат предков человека в результате наследственной изменчивости и естественного отбора преобразовались в органы членораздельной речи человека. Она составляет качественное различие высшей нервной деятельности человека и животных. Развитие головного мозга, мышления, сознания стимулировало в то же время совершенствование труда и речи. Все полнее и лучше осуществлялась преемственность трудового опыта в поколениях. Только в обществе мышление человека могло достигнуть столь высокого развития.

Итак, движущими силами антропогенеза являлись биологические факторы (наследственная изменчивость, борьба за существование и естественный отбор) и социальные (факторы (трудовая деятельность, общественный образ жизни, речь и мышление).




БИЛЕТ№ 15

ВОПРОС 1.

Половое размножение. В половом размножении принимают участие, как правило, две родительские особи, каждая из которых участвует в образовании нового организма, внося лишь одну половую клетку — гамету (яйцеклетку или сперматозоид). В результате слияния гамет образуется оплодотворенная яйцеклетка — зигота, несущая наследственные задатки обоих родителей, благодаря чему резко увеличивается наследственная изменчивость потомков. В этом заключается преимущество полового размножения перед бесполым. Одни гаметы богаты запасными питательными веществами и неподвижны — яйцеклетки; другие, маленькие, подвижные — сперматозоиды. Гаметы образуются в специализированных органах — половых железах. У высших животных женские гаметы (яйцеклетки) образуются в яичниках, мужские (сперматозоиды) — в семенниках.

Образование половых клеток. В процессе формирования половых клеток выделяют три стадии: — размножение — рост — созревание. Первичные половые клетки делятся путем митоза (период размножения), в результате чего их количество постоянно возрастает. Затем деление клеток прекращается, и они начинают расти. При сперматогенезе все 4 клетки в дальнейшем превращаются в сперматозоиды. Типичный сперматозоид состоит из головки, шейки и хвостика. Головка содержит ядро и незначительное количество цитоплазмы. На кончике головки располагается аппарат Гольджи, преобразованный в кольцевое тельце — акросому. В ней образуются ферменты, растворяющие мембрану яйцеклетки при оплодотворении. В цитоплазме шейки сосредоточены митохондрии, одна или несколько центриолей. При оогенезе мейотическое деление ядра сопровождается неравным делением цитоплазмы, в результате чего из ооцита развиваются одна крупная яйцеклетка и три маленькие клетки, называемые направленными тельцами, которые вскоре погибают. Биологический смысл формирования направленных телец заключается в необходимости сохранения в яйцеклетке максимального количества желтка, необходимого для развития будущего зародыша.