Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Частная производная, полный дифференциал ФНП. Связь дифференцируемости функции с существованием частных производных

Для функции одной вещественной переменной после изучения тем «Пределы» и «Непрерывность» (Введение в математический анализ) изучались производные и дифференциалы функции. Перейдем к рассмотрению аналогичных вопросов для функции нескольких переменных. Заметим, что если в ФНП зафиксировать все аргументы, кроме одного, то ФНП порождает функцию одного аргумента, для которой можно рассматривать приращение, дифференциал и производную. Их мы будем называть соответственно частным приращением, частным дифференциалом и частной производной. Перейдем к точным определениям.

Определение 4. Пусть задана функция переменных где - элемент евклидова пространства и соответствующие приращения аргументов , ,…, . При величины , называются частными приращениями функция . Полное приращение функции - это величина .

Например, для функции двух переменных , где - точка на плоскости и , соответствующие приращения аргументов, частными будут приращения , . При этом величина является полным приращениями функции двух переменных .

Определение 5. Частной производной функции переменных по переменной называется предел отношения частного приращения функции по этой переменной к приращению соответствующего аргумента , когда стремится к 0.

Запишем определение 5 в виде формулы или развернуто . Для функции двух переменных определение 2 запишется в виде формул , . С практической точки зрения данное определение означает, что при вычислении частной производной по одной переменной все остальные переменные фиксируются и мы рассматриваем данную функцию как функцию одной выбранной переменной. По этой переменной и берется обычная производная.

Пример 4. Для функции , где найдите частные производные и точку, в которой обе частные производные равны 0.

Решение. Вычислим частные производные , и систему запишем в виде Решением этой системы являются две точки и .

Рассмотрим теперь, как понятие дифференциала обобщается на ФНП. Функция одной переменной называется дифференцируемой, если ее приращение представляется в виде , при этом величина является главной частью приращения функции и называется ее дифференциалом. Величина является функцией от , обладает тем свойством, что , т. е. является функцией, бесконечно малой по сравнению с . Функция одной переменной дифференцируема в точке тогда и только тогда, когда имеет производную в этой точке. При этом константа и равна этой производной, т. е. для дифференциала справедлива формула .

Если рассматривается частное приращение ФНП , то меняется только один из аргументов, и это частное приращение можно рассматривать как приращение функции одной переменной, т. е. работает та же теория. Следовательно, условие дифференцируемости выполнено тогда и только тогда, когда существует частная производная , и в этом случае частный дифференциал определяется формулой .

А что же такое дифференциал ФНП?

Определение 3. Функция переменных называется дифференцируемой в точке , если ее приращение представляется в виде . При этом главная часть приращения называется дифференциалом ФНП.

Итак, дифференциалом ФНП является величина . Уточним, что мы понимаем под величиной , которую мы будем называть бесконечно малой по сравнению с приращениями аргументов . Это функция, которая обладает тем свойством, что если все приращения, кроме одного , равны 0, то справедливо равенство . По сути это означает, что = = + +…+ .

А как связаны между собой условие дифференцируемости ФНП и условия существования частных производных этой функции?

Теорема 1. Если функция переменных дифференцируема в точке , то у нее существуют частные производные по всем переменным в этой точке и при этом .

Доказательство. Равенство запишем при и в виде и раздели обе части полученного равенства на . В полученном равенстве перейдем к пределу при . В итоге мы и получим требуемой равенство . Теорема доказана.

Следствие. Дифференциал функции переменных вычисляется по формуле .

В примере 1 дифференциал функции был равен . Заметим, что этот же дифференциал в точке равен . А вот если мы его вычислим в точке с приращениями , , то дифференциал будет равен . Заметим, что , точное значение заданной функции в точке равно , а вот это же значение, приближенно вычисленное с помощью 1-го дифференциала, равно

А будет ли функция нескольких переменных дифференцируема в точке, если она имеет частные производные в этой точке. В отличии от функции одной переменной ответ на этот вопрос отрицательный. Точную формулировку взаимосвязи дает следующая теорема.

Теорема 2. Если у функции переменных в точке существуют непрерывные частные производные по всем переменным, то функция дифференцируема в этой точке.

Доказательство. Для наглядности рассмотрим функцию двух переменных и точки , , . Полное приращение функции в точке представим в виде и запишем

в виде . В каждой скобке меняется только одна переменная, поэтому мы можем и там и там применить формулу конечных приращений Лагранжа. Суть этой формулы в том, что для непрерывно дифференцируемой функции одной переменной разность значений функции в двух точках равна значению производной в некоторой промежуточной точке, умноженному на расстояние между точками. Применяя эту формулу к каждой из скобок, получим . В силу непрерывности частных производных производная в точке и производная в точке отличаются от производных и в точке на величины и , стремящиеся к 0 при , стремящихся к 0. Но тогда и, очевидно, . Теорема доказана.