ЭНЕРГЕТИКА ХИМИЧЕСКИХ ПРОЦЕССОВ

Науку о взаимных превращениях различных видов энергии называют термодинамикой.

При химических реакциях происходят глубокие качественные и количественные изменения в системах: рвутся связи в исходных веществах, возникают новые связи в конечных продуктах. Эти изменения сопровождаются поглощением или выделением энергии. В большинстве случаев этой энергией является теплота.

Раздел термодинамики, изучающий тепловые эффекты химических реакций, называют термохимией. Реакции, которые сопровождаются выделением теплоты, называют экзотермическими, а поглощением теплоты - эндотермическими.

С помощью энергетики химических процессов решают многие научные и технологические задачи, например, определения:

- условий протекания реакций;

- энергий кристаллических решёток;

- теплот и температур сгорания;

- теплотворной способности веществ;

- термической устойчивости веществ

- и др.

При любом процессе соблюдается закон сохранения. Согласно первому закону химической термодинамики теплота Q, поглощённая системой, идет на изменения ее внутренней энергии ΔU и на совершение работы A:

 

Q = ΔU + A

Внутренняя энергия системыU – это общий ее запас, включающий энергию поступательного и вращательного движения молекул, энергию внутримолекулярных колебанийатомов и атомных групп, энергию движения электронов, внутриядерную энергию и т.д. Внутренняя энергия – полная энергия системы без потенциальной энергии, обусловленной положением системы в пространстве, и без кинетической энергии системы как целого. Абсолютное значение внутренней энергии U веществ не известно, так как нельзя привести систему в состояние, лишенное энергии. Внутренняя энергия, как и любой вид энергии, является функцией состояния, то есть ее изменение определяется начальным и конечным состояниями системы:

 

ΔU = U2 – U1

А – работа против внешнего давления, в первом приближении А = PΔV, где ΔV – изменение объема системы: ΔV = V2 – V1

Большинство химических реакций протекают в изобарно- изотермических условиях: Р = Const и T = Const, поэтому:

 

QP,T = ΔU + PΔV; QP,T = (U2 – U1) + p (V2 – V1),

QP,T = (U2 + pV2) – (U1 + pV1), где U + pV обозначим через Н

 

Величину Н называют энтальпией. Таким образом, теплота QP,T при Р = const и

Т = const приобретает свойство функции состояния: ее изменение не зависит от пути, по которому протекает процесс. Отсюда QP,T реакции в изобарно-изотермическом процессеравна изменению энтальпии системы ΔН (если единственным видом работы является работа расширения):

 

Qp= -ΔН

 

Энтальпия, как и внутренняя энергия, является функцией состояния: ее изменение ΔН определяется только начальным и конечным состояниями системы и не зависит от пути перехода.

Теплота химического процесса в изобарно-изотермических условиях называется тепловым эффектам химической реакции.

Термохимические расчеты основаны на законе Г.И. Гесса (1840 г.): тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

Часто в термохимических расчетах применяют следствие закона Г.И. Гесса: тепловой эффект реакции (ΔНх.р.) равен сумме теплот образования ΔНобр. продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом коэффициентов перед формулами этих веществ в уравнении реакции:

 

ΔНх.р. = Σ ΔНпрод. - Σ ΔНисх в-в.