Квантовые поля

 

Во времена Ньютона цель физики состояла в изучении движения обычных предметов — камней, пушечных ядер, планет — и полученные им уравнения прекрасно служили этой цели. Законы движения Ньютона — это математический способ выразить движение реальных тел, если их толкнуть, потянуть или бросить. В течение более чем столетия данный подход давал прекрасные результаты. Однако в начале XIX века английский учёный Майкл Фарадей ввёл в обиход трудное для понимания, но эффективное понятие поля .

Возьмите мощный магнит и разместите его в сантиметре от канцелярской скрепки. Вы знаете, что произойдёт. Скрепка подпрыгнет вверх и прилипнет к поверхности магнита. Этот опыт настолько распространён, настолько хорошо известен, что легко проглядеть, насколько он невероятен. Магнит заставляет двигаться канцелярскую скрепку, даже не прикоснувшись к ней. Как такое возможно? Каким образом передаётся влияние магнита на скрепку без какого-либо контакта? Эти и другие вопросы привели Фарадея к постулату, что хотя магнит в буквальном смысле слова не касается скрепки, он производит нечто, что касается . Это нечто было названо Фарадеем магнитным полем .

Поля, порождённые магнитом, нельзя увидеть, нельзя услышать, ни одно из наших чувств восприятия не настроено на них. Однако это всего лишь физиологические ограничения. Так же как от пламени идёт тепло, так и от магнита исходит магнитное поле. Находясь за пределами физической границы твёрдого магнита, магнитное поле является некоей «дымкой» или «эссенцией», которая наполняет пространство и действует по распоряжению магнита.

Кроме магнитных есть и другие поля. Заряженные частицы порождают другой тип — электрические поля, подобные тем, из-за которых можно получить удар током, прикоснувшись к металлической ручке двери комнаты, устланной шерстяными коврами. Эксперименты Фарадея совершенно неожиданно показали, что электрические и магнитные поля внутренне связаны: было обнаружено, что изменение электрического поля порождает магнитное и наоборот. В середине XIX века Джеймс Клерк Максвелл подвёл мощный математический фундамент под эти эксперименты, описав электрические и магнитные поля в виде чисел, приписанных каждой точке пространства, причём значения этих чисел характеризуют способность поля оказывать влияние в данной точке. В точках пространства, где численные значения магнитных полей велики, например в томографической камере, металлические предметы будут испытывать сильное отталкивание или притяжение. В точках пространства, где велики численные значения электрических полей, например внутри грозового облака, могут происходить сильные электрические разряды, такие как молнии.

Максвелл вывел уравнения, впоследствии названные в его честь, которые описывают изменение силы электрических и магнитных полей в пространстве от точки к точке и от одного момента времени к другому. Именно эти уравнения описывают море электрических и магнитных полей — так называемые электромагнитные волны , окружающие нас со всех сторон. Включите сотовый телефон, радио или беспроводной компьютер, и получаемые сигналы будут лишь крохотной крупицей из электромагнитного потока, молчаливо обтекающего нас каждую секунду. А более всего потрясает то, что и видимый свет, согласно уравнениям Максвелла, является электромагнитной волной, такой, которую научились воспринимать в процессе эволюции наши глаза.

Во второй половине XX столетия физики присоединили концепцию поля к быстро развивающемуся пониманию микромира, основанному на квантовой механике. В итоге квантовая теория поля стала математическим аппаратом для создания самых точных теорий материи и сил в природе. С её помощью физики установили, что помимо электрических и магнитных полей существует целый набор других полей, таких как сильные и слабые ядерные поля , электронные , кварковые , и нейтринные поля . Поле, которое является теоретическим фундаментом инфляционной космологии[7], называется полем инфлатона . Однако на настоящий момент его статус остаётся совершенно гипотетическим.