Краткие сведения о нефтехимических производствах

Нефтехимической промышленностьюпринято называть производ­ство химических продуктов на основе нефти и газа. К нефтехимическим производствам относятся:

1) производство сырья — олефинов, диенов, ароматических и наф­
теновых углеводородов;

2) производство полупродуктов — спиртов, альдегидов, кетонов, ан­
гидридов, кислот и др.;

3) производство поверхностно-активных веществ;

4) производство высокомолекулярных соединений — полимеров.
Производство нефтехимического сырья.Нефтяные фракции и

газы не могут быть прямо переработаны в товарные химические про­дукты. Для такой переработки нужно предварительно получить хи­мически активные углеводороды, к которым относятся в первую оче-редь непредельные углеводороды (олефины): этилен С2Н4, пропилен С3Н6 бутилен С4Н8 и др. Основным промышленным методом получе­ния олефинов является пиролиз различного газообразного и жидко­го нефтяного сырья.


184 Часть I. Основы нефтегазового дела

Еще одним видом сырья для нефтехимического производства слу­жит ацетилен С2Н2, получаемый при высокой температуре путем элек­трокрекинга (в условиях вольтовой дуги) метана. Ацетилен является одним из исходных материалов для производства синтетических во­локон и пластмасс.

Производство спиртов.Спирты применяют в производстве синте­тических полимеров, каучуков, моющих веществ, в качестве раство­рителей, экстрагентов и для других целей. Одним из важнейших мето­дов производства спиртов является гидратация олефинов, в ходе кото­рой вырабатывают этиловый, изопропиловый, изобутиловый и другие спирты. Метиловый спирт получают гидрированием окиси углерода (соединение СО и водорода в условиях высоких давлений и темпера­тур в присутствии катализатора). Высшие спирты образуются при гид­рировании высших жирных кислот и их эфиров, альдегидов и др.

Производство поверхностно-активных веществ.Для производст­ва синтетических материалов необходимы ароматические углеводо­роды — бензол, толуол, ксилол, нафталин и др. Бензол применяется главным образом для производства стирола и фенола. При взаимо­действии с низкомолекулярными олефинами (этилен, пропилен, бу­тилен) из фенола получают промежуточные продукты, необходимые для производства моющих веществ, смол и присадок к маслам. Толу­ол в основном используется как высокооктановая добавка к моторным топливам и как растворитель. Ксилол применяется при производстве синтетических волокон («лавсан»).

Долгое время единственным промышленным методом получения ароматических углеводородов из нефти был пиролиз. В настоящее время их получают также при каталитическом риформинге узких бен­зиновых фракций.

Производство полимеров.К высокомолекулярным соединениям (полимерам) относят вещества с молекулярной массой 5000 и более. Полимеры состоят из многократно повторяющихся элементов — ос­татков мономеров.

Основными методами синтеза полимеров являются полимериза­ция и поликонденсация. Полимеризациейназывается реакция обра­зования высокомолекулярных веществ путем соединения нескольких молекул мономера, которая не сопровождается изменением их соста­ва. При поликонденсацииобразование полимеров сопровождается выделением какого-либо низкомолекулярного вещества (воды, спир­та, аммиака и др.). Поэтому состав элементарного звена полимера в данном случае не соответствует элементарному составу исходного мономера.


Глава 4. Переработка нефти, газа и углеводородного сырья 185

Многообразие вырабатываемых полимеров обусловливает различ­ные технологии их производства.

Простейший технологический процесс производства синтетическо­го каучукавыглядит следующим образом. Из этилена путем гидрата­ции получают этиловый спирт. Испаряя его в герметически закрытых сосудах и нагревая пары до нескольких сот градусов в реакторе в при­сутствии специального катализатора, получают бутадиен. После очи­стки бутадиен подвергают каталитической полимеризации, вырабаты­вая каучук-сырец. Перемешивая его при пониженном давлении, из каучука-сырца удаляют газы. Из полученного продукта получают по­лотнища каучука, которые в рулонах доставляют на заводы по произ­водству резины для последующего изготовления различных изделий.

К группе пластмассотносятся винипласт, пенопласт, полиэтилен, тефлон и другие материалы. Винипласт получают в результате хими­ческой переработки поливинилхлоридной смолы, образуемой при ре­акции этилена с хлором. Винипласт используется для производства электроизоляционных материалов, изготовления труб и арматуры для химической промышленности и т. д.

Кроме того, добавляя к винипласту специальное вещество, выде­ляющее большое количество газов при нагревании (порофор), полу­чают пенопласт. Промышленный пенопласт в 7... 10 раз легче воды.

Широкое распространение получил полиэтилен — высокомолекуляр­ный продукт полимеризации этилена. Различают полиэтилен высокого давления и полиэтилен низкого давления. Первый получают при давле­нии 100...300 МПа и температуре 100...300 °С в присутствии кислорода. Для этого процесса требуется этилен высокой частоты. Полиэтилен низкого давления получают путем полимеризации этилена при давлении до 1 МПа и температуре 60...80 "С в присутствии специального катализатора.

Тефлон (полифторэтилен) получают путем полимеризации моно­мера — тетрафторэтилена. Такие мономеры обычно получают из эти­лена, заменяя в его молекулах атомы водорода атомами фтора.

Из синтетических волоконв настоящее время наиболее широкое распространение получили капрон, лавсан, нитрон и др.

Исходным материалом для выработки капрона является капролак-там. Его получают в результате сложной химической переработки фе­нола или бензола. Подвергая капролактам полимеризации при тем­пературе 250 °С в присутствии азота, получают капроновую смолу, из которой впоследствии вырабатывают капроновое волокно.

Лавсан вырабатывают из пара-ксилола, который, в свою очередь, получают путем каталитической переработки бензиновых фракций на установках каталитического риформинга.


186 Часть I. Основы нефтегазового дела

4.3.2. Основные продукты нефтехимии

Поверхностно-активные вещества(ПАВ) широко применяются в различных отраслях промышленности, в сельском хозяйстве и в быту.

В нефтедобыче (см. главу 2) ПАВ применяют для разрушения водо-нефтяных эмульсий, образующихся в ходе извлечения нефти на по­верхность земли и ее движения по промысловым трубопроводам. ПАВ добавляют в воду при мойке резервуаров и отсеков танкеров, чтобы ускорить процесс. Одним из способов перекачки высоковязкой неф­ти является ее совместный транспорт с водой, обработанной раство­ром ПАВ: в этом случае вода хорошо смачивает металл и нефть дви­жется как бы внутри водяного кольца.

Кроме того, ПАВ используют при изготовлении синтетических моющих веществ, косметических препаратов, лосьонов, зубных паст, туалетного мыла, при дублении кожи, крашении меха, при хлебопе­чении, получении противопожарных пен, при изготовлении конди­терских изделий и мороженого, в качестве пенообразователя при про­изводстве бродящих напитков (квас, пиво) и др.

Несмотря на большое многообразие ПАВ, все они могут быть раз­делены на две группы: ионогенные ПАВ, которые при растворении в воде диссоциируют на ионы) и неионогенные ПАВ, которые на ионы не диссоциируют.

В зависимости от того, какими ионами обусловлена поверхност­ная активность ионогенных веществ, — анионами или катионами, ио­ногенные вещества подразделяются на анионоактивные, катионоак-тивные и амфолитные. Последние отличаются тем, что в кислом рас­творе ведут себя как катионоактивные ПАВ, а в щелочном растворе — как анионоактивные.

По растворимости в тех или иных средах ПАВ бывают водораство­римые, водомаслорастворимые и маслорастворимые.

Синтетические каучукипришли на смену каучуку натуральному. Термин «каучук» происходит от слова «каучу», которым жители Бра­зилии обозначали продукт, получаемый из млечного сока (латекса) ге­веи, растущей на берегах р. Амазонки. Натуральный каучук выделя­ли из латекса коагуляцией с помощью муравьиной, щавелевой или уксусной кислоты. Образующийся рыхлый сгусток промывали водой и прокатывали на вальцах для получения листов. Затем их сушили и коптили в камерах, наполненных дымом, с целью придания натураль­ному каучуку устойчивости против окисления и микроорганизмов.

В качестве исходных материалов для производства синтетическо­го каучука в настоящее время используются, в основном, бутадиен,


Глава 4. Переработка нефти, газа и углеводородного сырья 187

стирол, изопрен и другие мономеры, получаемые из углеводородных газов природного и промышленного происхождения.

Производятся различные виды синтетического каучука, подразде­ляемые на две группы: каучуки общего назначения (-80% от общемиро­вого производства) и специальные. Первые применяют там, где необ­ходима только характерная для каучуков эластичность при обычных температурах. Специальные каучуки используются в производстве изделий, которые должны обладать стойкостью к действию раство­рителей, масел, тепло- и морозостойкостью.

Пластическими массаминазывают конструкционные материалы, полученные на основе полимера и обладающие способностью фор­мироваться и в обычных условиях сохранять приданную им форму в виде готовых изделий. Кроме полимеров, в состав пластмасс входят наполнители, пластификаторы, стабилизаторы, красители и другие добавки.

Наполнители вводят для улучшения физико-механических свойств пластмасс, уменьшения усадки и снижения их стоимости. В качестве наполнителей используют древесную муку, бумагу, хлопчатобумаж­ную ткань, слюду, тальк, каолин, стекловолокно.

Пластификаторы придают пластмассам гибкость и эластичность, уменьшают жесткость и хрупкость. В качестве пластификаторов ис­пользуют дибутилфталат, стеарин, камфору, глицерин и др.

Стабилизаторы (противостарители, антиокислители, термостаби­лизаторы и др.) способствуют длительному сохранению пластмасса­ми своих свойств в условиях эксплуатации.

Красители вводят в пластмассу с целью придания ей нужного цвета.

В зависимости от поведения при нагревании пластмассы делятся на термопластичные и термореактивные. Термопластичные пласт­массы (термопласты) при нагревании размягчаются и становятся пла­стичными, а при охлаждении снова затвердевают. Размягчение и от­верждение можно производить многократно. К термопластам отно­сятся полиэтилен, полипропилен, поливинилхлорид, полистирол, фторопласты и др. Термореактивные пластмассы (реактопласты) в на­чале термообработки размягчаются, становятся пластичными и при­нимают заданную форму. Однако при дальнейшем нагревании они теряют пластичность и переходят в неплавкое и нерастворимое со­стояние. К реактопластам относятся фенопласты, аминопласты и др.

Пластические массы известны человечеству с древних времен. Из­готовляли их на основе природных смол — канифоли, битумов и др. Старейшим пластическим материалом, приготовленным из искусст-


188 Часть I. Основы нефтегазового дела

венного полимера — нитрата целлюлозы, является целлулоид, произ­водство которого было начато в США в 1872 г. В 1906... 1910 гг. в Рос­сии и Германии были изготовлены первые реактопласты на основе феноло-формальдегидной смолы. В 1930-х гг. в СССР, Германии и дру­гих промышленно развитых странах было организовано производст­во термопластов — поливинилхлорида, полистирола и др. Однако бур­ное развитие промышленности пластмасс началось только после вто­рой мировой войны. В 50-х годах во многих странах был начат выпуск «пластика номер один» — полиэтилена.

Сегодня представить нашу жизнь без пластмасс невозможно. В строительстве их используют при отделочных работах, в виде сте­новых панелей, оконных переплетов, дверей и т. п. В машинострое­нии из пластмасс изготовляют зубчатые и червячные колеса, шкивы, подшипники, ролики, трубы и т. д. В авиастроении с использованием реактопластов изготовляют реактивные двигатели, крылья, фюзеля­жи самолетов, несущие винты вертолетов, топливные баки и др. В ав­томобилестроении из пластмасс изготовляют детали двигателя, транс­миссии, шасси, кузова, элементы отделки салона. В медицине исполь­зуют пластмассовый инструмент, сердечные клапаны, протезы конечностей, хрусталики глаза и др. Этот перечень можно было бы продолжить.

Синтетические волокнанаряду с натуральными и искусственны­ми широко используются для бытовых и технических целей.

Возможность получения химических волокон из различных ве­ществ (клей, смолы) предсказывалась еще в XVII—XVIII вв. Однако их производство впервые в промышленных масштабах было органи­зовано во Франции в 1891 г.

Производство синтетических волокон началось с выпуска в 1932 г. поливинилхлоридного волокна (Германия). В 1942 г. в промышленном масштабе было выпущено наиболее известное полиамидное волок­но — капрон (США).

В настоящее время, кроме полиамидного волокна, производят так­же полиэфирное (лавсан), полиакрилонитрильное (нитрон), поливи-нилхлоридное и полипропиленовое волокна. Их выпускают в виде тек­стильных и кордных нитей, а также в виде штапельного волокна.

Синтетические волокна обладают высокой разрывной прочностью, хорошей формоустойчивостью, несминаемостью, стойкостью к воз­действию света, влаги, плесени, температуры. Разнообразие свойств исходных синтетических полимеров, а также возможность модифи­кации как исходного сырья (мономера), так и самого волокна позво­ляет получать продукцию с заданными свойствами и высокого каче-


Глава 4. Переработка нефти, газа и углеводородного сырья 189

ства. В связи с этим синтетические волокна во многих случаях вытес­няют натуральные и искусственные.

Ткани из синтетических волокон применяются не только в быту. Они используются как электрооблицовочные и изоляционные мате­риалы в автомобилях, железнодорожных вагонах, морских и речных судах. Синтетическим волокнам отдают предпочтение при изготов­лении канатов, рыболовных сетей, парашютов и других изделий, где требуются материалы, отличающиеся высокой прочностью на разрыв.

РЕЗЮМЕ

При переработке нефти в настоящее время получают: 1) топливо; 2) нефтяные масла; 3) парафины, церезины, вазелины; 4) нефтяные битумы; 5) осветительные керосины; 6) растворители; 7) прочие неф­тепродукты (нефтяной кокс, сажу, консистентные смазки и др.). Пе­реработка нефти осуществляется на нефтеперерабатывающих заво­дах.

Природные горючие газы перерабатывают на газоперерабатываю­щих заводах, которые строят вблизи крупных нефтяных и газовых ме­сторождений. Предварительно газы очищают от механических при­месей (частиц пыли, песка, окалины и т. д.), осушают и очищают от сероводорода и углекислого газа. Продуктами первичной переработ­ки природных горючих газов являются газовый бензин, сжиженные и сухие газы, технические углеводороды: этан, пропан, бутаны, пен-таны.

Нефтехимической промышленностью принято называть производ­ство химических продуктов на основе нефти и газа, к которому отно­сятся:

1) производство сырья — олефинов, диенов, ароматических и наф­
теновых углеводородов;

2) производство полупродуктов — спиртов, альдегидов, кетонов, ан­
гидридов, кислот и др.;

3) производство поверхностно-активных веществ;

4) производство высокомолекулярных соединений — полимеров.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

1. Назовите основные продукты переработки нефти.

2. Охарактеризуйте основные этапы переработки нефти.

3. Назовите и охарактеризуйте основные типы нефтеперерабаты­
вающих заводов.


190 Часть I. Основы нефтегазового дела

4. Каковы основные процессы, применяемые на газоперерабаты­
вающих заводах?

5. В чем состоят различия нефтепереработки и нефтехимического
производства?

6. Что является сырьем для нефтехимического производства?

ЛИТЕРАТУРА

1. Мановян А.К. Технология первичной переработки нефти и при­
родного газа: Учеб. пособие для студентов вузов. — М.: Химия, 2001.

2. Основы нефтегазового дела: Учебник / А.А. Коршак, А.М. Шам-
мазов. — 2-е изд., доп. и испр. —Уфа: ДизайнПолиграфСервис, 2002.

3. Процессы и аппараты нефтегазопереработки и нефтехимии:
Учебник для вузов / А.И. Скобло, Ю.К. Молоканов, АИ. Владимиров,
В.А. Щелкунов. —3-е изд., перераб. и доп. — М.: Недра, 2000.

4. Шарафиев Р.Г. Техника сбора, подготовки и переработки нефти
и газа (конструкция, расчеты и испытания): Учеб. пособие. —Уфа:
Уфим. гос. нефт. техн. ун-т, 1997.


ГЛАВА 5. ХРАНЕНИЕ НЕФТИ, НЕФТЕПРОДУКТОВИ ГАЗА

5.1. Хранение и распределение нефти и нефтепродуктов

5.1.1. Классификация нефтебаз

5.1.2. Операции, проводимые на нефтебазах

5.1.3. Объекты нефтебаз и их размещение

5.1.4. Сливо-наливные устройства для железнодорожных цистерн

5.1.5. Нефтяные гавани, причалы и пирсы

5.1.6. Установки налива автомобильных цистерн

5.1.7. Подземное хранение нефтепродуктов

5.1.8. Автозаправочные станции

5.2. Хранение и распределение газа

5.2.1. Неравномерность газопотребления и методы ее компенсации

5.1.1. Хранение газа в газгольдерах

5.2.1. Подземные газохранилища

5.2.2. Газораспределительные сети

5.2.3. Газорегуляторные пункты

5.2.4. Автомобильные газонаполнительные компрессорные станции

5.2.5. Использование сжиженных углеводородных газов в системе газоснабжения

5.2.6. Хранилища сжиженных углеводородных газов
Резюме

Контрольные вопросы и задания
Литература

5.1. ХРАНЕНИЕ И РАСПРЕДЕЛЕНИЕ НЕФТИ И НЕФТЕПРОДУКТОВ