Импульсные регуляторы на транзисторах

Типовая структурная схема включения:

  • Г - управляющий генератор;
  • К - силовой ключ;
  • D - диод;
  • М - электродвигатель;

· А - аккумулятор.

. Эквивалентная схема электродвигателя постоянного тока:

Теперь посмотрим, как потечет ток через двигатель, когда ключ открыт:

Заметьте, что ток течет против направления напряжения, наведенного в обмотках - это и есть полезная работа тока по вращению ротора. На сопротивлении часть энергии тока превращается в тепло - эта часть вредная, снижающая КПД двигателя. На индуктивности часть энергии запасается в магнитном поле катушки. Источником энергии для всех трех компонент здесь является аккумулятор. Когда ключ закрывается, ток не прекращает свое движение и схема выглядит так:

Как видите, ток через двигатель продолжает течь в прежнем направлении. Источником энергии для него служит магнитное поле индуктивности, а диод - замыкает цепь в паузе, когда ключ К закрыт. Поскольку вращающий момент ротора создает ток, а не напряжение на роторе, вам понятно, почему при импульсном питании двигателя двигатель не дрожит. Для уменьшения пульсаций тока индуктивность должна быть больше (больше суммарная запасенная энергия), а период импульсов меньше - меньше порции энергии, перекачиваемой туда - сюда. Так мы пришли к важнейшему принципу определения необходимой частоты работы регулятора хода. Она должна быть тем больше, чем меньше индуктивность обмоток ротора и больше мощность мотора.

А что будет, если частота генератора ниже оптимальной?

Энергии, запасенной в индуктивности обмоток двигателя в течение импульса, не будет хватать для сглаживания пульсаций тока в паузе между импульсами. Появится заметное дрожание ротора. Но это не страшно. Плохо другое: - уменьшится мощность двигателя, поскольку полезную работу совершает только постоянная компонента импульсного тока. Переменная же будет рассеиваться на магнитопроводе двигателя, нагревая его. Упадет КПД в связке регулятор - электродвигатель.

Торможение электродвигателя.

Электродвигатель на больших оборотах обладает приличной кинетической энергией. Как и куда она девается при торможении?

В регуляторах , реализующих функцию торможения, помимо ключа, дозирующего подачу энергии на двигатель от аккумулятора, ставится еще один ключ, параллельно двигателю:

Алгоритм функционирования тормозов такой: Когда управляющий импульс находится в положении "Стоп" ключ К закрыт, а ключ К2 открыт. Мы помним, что при вращении ротора коллекторной машины постоянного тока она работает как генератор. Поэтому, если попытаться покрутить ротор двигателя, то вырабатываемая им энергия потечет через ключ К2. Ротор проворачиваться будет, но с заметным усилием, тем большим, чем больше скорость раскрутки ротора. При переводе передатчика в положение "Ход" начинает работу генератор импульсов регулируемой длительности, открывающий ключ К. Ключ К2 при этом закрывается. Двигатель начинает раскручиваться. Если после этого управление перевести снова в положение "Стоп", то ключ К закрывается, а ключ К2 открывается. Вырабатываемая энергия течет через открытый ключ К2 и превращается в тепло как на сопротивлении ключа, так и на сопротивлении обмоток самого двигателя. Кинетическая энергия ротора быстро перекачивается в тепловую.

Поскольку сопротивление ключей маленькое, токи торможения получаются очень большими. На мощных регуляторах, чтобы не допустить перегрузки ключей и двигателя торможение делают не сразу резким, а плавным. Для этого в начале торможения ключ К2 управляется также от генератора импульсов переменной длительности. В низковольтных регуляторах в качестве тормозящих ключей чаще используют p-канальные MOSFET-транзисторы, потому что ими проще управлять. При использовании n-канального транзистора для управления делают схему смещения потенциала или ставят специальную микросхему - драйвер ключа. Наряду с возможностью торможения, дополнительный ключ, параллельный двигателю, избавляет от необходимости установки отдельного диода, имевшегося на схемах в начале статьи. Дело в том, что современные силовые MOSFET-транзисторы имеют внутри встроенный интегральный диод.