Соединения кремния

 

Кремний является после кислорода самым распространенным элементом в земной коре (27,6 мас. %), встречается в многочисленных горных породах, в состав которых входит в виде своего оксида SiO2 (кремнезема).

Диоксид кремния (SiO2), как правило, кристалличен, но обладает полиморфизмом (образует 6 кристаллических форм):

 

α- кварц β- кварц α- тридмит β- тридмит α- кристобаллит β- кристобаллит.

 

Кристаллический SiO2 находится в природе, главным образом, в виде минерала кварца. Прозрачные бесцветные кристаллы кварца, имеющие форму шестигранных призм с шестигранными пирамидами на концах, называются горным хрусталем. Горный хрусталь, окрашенный примесями в лиловый цвет, называется аметистом, а в рубиновый – дымчатом топазом. Одной из разновидностей кварца является кремень. К мелкокристаллическим разновидностям кварца относятся агат и яшма.

Кварц входит также в состав многих сложных горных пород, например, гранита и гнейса. Из мелких зерен кварца состоит обычный песок. Чистый песок – белого цвета, но чаще он бывает окрашен соединениями железа в желтый или красный цвет.

Всего кремнезем имеет свыше 20 аллотропических форм. Кроме перечисленных выше, в природе имеется ряд минералов, находящихся в скрыто кристаллической форме (агат, оникс, халцедон). Аморфный SiO2 распространен в природе меньше, чем кристаллический. На дне морей имеются отложения мелкого пористого аморфного кремнезема, называемого трепелом или казельгуром. Аморфное состояние имеют опал, халцедон и ряд других минералов.

Кремнезем входит в состав растительных и животных организмов (диатомовые водоросли, хвощ, кремниевые губки, радиополярии), образуя твердые скелетные части и ткани. В то же время кремнезем оказывает вредное биологическое действие на человека: вызывает силикоз и способствует образованию камней в почках и поджелудочной железе.

SiO2 обладает способностью соединяться с аморфным оксидом алюминия (Al2O3), образуя при этом алюмосиликаты, в которых оба оксида не теряют способности солеобразования. В природе наиболее распространены следующие алюмосиликаты:

1) полевой шпат (ортоклаз) - K2O·3Al2O3·6SiO2; (31)
2) слюда белая - K2O·3Al2O3·6SiO2·2H2O; (32)
3) каолин - Al2O3·2SiO2·2H2O; (33)
4) асбест - CaO·3MgO·4SiO2. (34)

Самыми важными из алюмосиликатов являются полевые шпаты. В их состав входят оксиды кремния и алюминия, а также калия, натрия или кальция. Преобладающий цвет полевых шпатов – белый или красный.

Слюды обладают способностью расслаиваться на тонкие гибкие листочки. В состав некоторых слюд наряду с кремнием входят атомы водорода, калия или натрия, иногда атомы кальция, магния и железа. Обычная белая слюда представляет собой большие прозрачные пластины. Слюды, содержащие большое количество железа и магния, имеют черный цвет.

Из кристаллов кварца, полевого шпата и слюды состоят самые распространенные сложные горные породы – гранит и гнейсы. Современная деятельность воды и воздуха приводит к их выветриванию. При действии воды и углекислого газа на ортоклаз образуется поташ (К2СО3) и каолин, составляющий основу глин. Чистый каолин (белая глина) встречается сравнительно редко. Он имеет белый цвет и содержит незначительную примесь кварцевого песка. Обычно глина представляет собой смесь каолина с другими веществами, окрашивающими ее в желтовато-бурый или синеватый цвет.

Силикат, содержащий в своем составе кальций и магний, имеет волокнистую структуру. Встречается в природе в виде асбеста.

Диоксид кремния SiO2. Представляет собой белый порошок или белые (часто прозрачные) кристаллы. В зависимости от вида полиморфной модификации SiO2 плавится в интервале температур от 15000С до 17050С. Расплавленный кремнезем затвердевает в аморфную стеклообразную массу (кварцевое стекло). Разрушается только фтороводородной (плавиковой) кислотой.

SiO2 – ангидрид кремниевой кислоты. Хорошо реагирует при сплавлении с основными оксидами, образуя силикаты, и медленно растворяется в концентрированных растворах щелочей:

SiO2 + 2 NaOH = Na2SiO3 + H2O. (35)

Кремниевые кислоты и их соли. Кремниевые кислоты не образуются при непосредственном взаимодействии SiO2 с Н2О. Однако при подкислении водных растворов силикатов (растворимого стекла) или при гидролизе галогенидов кремния образуется гидратированный диоксид кремния mSiO2·nH2O, выпадающий в осадок. В водном растворе над этим осадком существуют молекулы ортокремневой кислоты состава H4SiO4. Эта кислота малоустойчива. В концентрированных растворах ее молекулы самопроизвольно (лучше при подкислении) объединяются между собой с отщеплением воды и образуют цепи – Si – O – Si – O – сначала высокомолекулярных, а затем и коллоидных агрегатов. Конденсация молекул заканчивается образованием структур с пространственной решеткой. Такой процесс идет при обработке силиката натрия Na2SiO3 хлороводородной кислотой:

Na2SiO3 H4SiO4 mSiO2·nH2O. (36)

Осадок гидратированного диоксида кремния сначала вязкий, но он довольно быстро твердеет, переходя в бесцветный гель. При дальнейшем хранении на воздухе происходит постепенное обезвоживание геля и образуется непрозрачный, белый, чрезвычайно пористый продукт – силикагель. Путем сильного прокаливания и последующего вымывания хлорида натрия получают высокодисперсный порошок SiO2 (белая сажа).

Соли кремниевых кислот называются силикатами. Ортокремниевая кислота образует ортосиликаты, метакремниевая – метасиликаты, дикремниевая (H6Si2O7) – дисиликаты.

 

Строение силикатов. В ортосиликатах ион SiO44- имеет строение правильного тетраэдра. В дисиликатах ион Si2O76- построен из двух одинаковых тетраэдров [SiO4]4-, связанных общей вершиной (мостиковым атомом О). Число тетраэдров, соединенных вершинами, может увеличиваться при дальнейшей конденсации, в результате образуются кольцевые анионы типа Si6O1812-. Строение перечисленных анионов представлено на рис.1.

 

 

Рис. 1. Строение силикат-анионов с ограниченными размерами:

а) SiO44-, тетраэдр, средний атом О находится в вершине, точно над атомом Si, расположенным в центре; б) Si2O76-, два тетраэдра с общей вершиной; в) цикл Si6O1812-.

 

Наряду с указанными силикат-ионами, имеющими ограниченные размеры, существует огромное число силикат-ионов с неограниченными размерами. Тетраэдры [SiO4]4- могут объединяться, образуя цепочечные, ленточные, плоскостные и пространственные структуры, отрицательный заряд которых нейтрализуется положительными ионами металлов (рис.2).

 

Рис.2. Строение силикат-анионов с неограниченными размерами

 

Силикаты с цепочечным и ленточным строением способны расщепляться на тонкие волокна (асбест), а с плоскостным строением легко расщепляются на отдельные пластины (слюды). Силикаты могут набухать в результате того, что молекулы Н2О размещаются между анионными слоями (глины).

Главная роль в построении структуры силикатов принадлежит “жесткому” кремнекислородному аниону радикалу катионы (Fe, Mn, Mg и другие) лишь заполняют пустоты между тетраэдрами, и их расположение полностью зависит от геометрических особенностей первого. В свете же учения академика Н.В. Белова, напротив, эти конструкции пластичны и способны “приспосабливаться” к узору, заданному крупными катионами. Поэтому главным элементом структуры силикатов служат именно катионы. На этом основана современная кристаллохимия силикатов.

Пространственно – сетчатое строение имеют сам диоксид кремния и многочисленные природные и искусственные алюмосиликаты (смешанные соли – алюминат – силикаты). В алюмосиликатах часть атомов кремния в тетраэдрах [SiO4]4- замещена на атомы Al.

Простейший алюмосиликат Al2O3´2SiO2´2H2O (H4AL2SiO3) – каолинит - обладает очень сложной структурой, его химическая сущность хорошо передается структурной формулой, предложенной В.И. Вернадским:

H ׀

׀ О

O ׀

O Si O O --- Si --- O

׀ ׀ ׀ ׀ ׀ ׀

OH – Al O Al OH спекание - O – Al O Al -

׀ ׀ ׀ ׀ ׀ ׀

O Si O O --- Si --- O

O ׀

׀ каолинитО

H ׀

фарфор

 

Пространственные сетки алюмосиликатов, относящиеся к цеолитам, избирательно включают и удерживают катионы определенных размеров, что используется в химической практике. Цеолиты являются природными ионообменниками: в канале их пространственной сетки находятся ионы металлов, которые могут замещаться на катионы, размеры которых соизмеримы с размерами каналов.

Искусственные силикаты. Из природных алюмосиликатов, которые перечислены выше, искусственным путем получают разнообразные силикатные материалы, имеющие широкое практическое применение. Важнейшими из них являются стекло, керамика, цемент.

Растворимое стекло. Серый стеклообразный кусковой материал, который при нагревании с водой под избыточным давлением образует вязкий раствор. По составу представляет собой смесь различных натриевых и калиевых силикатов. Получают сплавлением кварцевого песка с водой и поташом (К2СО3).

Стекло. Прозрачный твердый материал, структура которого соответствует аморфному состоянию вещества. По составу стекло представляет смесь различных силикатов, преимущественно силикатов щелочных металлов и кальция.

По химическим свойствам стекло – инертный материал. Оно устойчиво к химическим воздействиям, только фтороводородная кислота и расплавы гидроксидов щелочных элементов разрушают стекло.

Стекло получают сплавлением сырья, в простейшем случае кварцевого песка, известняка (СаСО3) и соды, в горшковых и ванных стекловаренных печах; нагрев осуществляют генераторным газом. Образование стекла идет по реакции:

Na2CO3 + CaCO3 + nSiO2 = Na2SiO3+CaSiO3 + + (n-2)SiO2+СO2 (37)

По структуре стекло представляет собой переохлажденную систему. Катионы и анионы вещества стекла расположены друг относительно друга как в жидкости, то есть с соблюдением лишь ближнего порядка. В то же время тип движения ионов в стекле – в основном колебания – характерен для твердого состояния. Благодаря такому строению стекло не имеет четких границ температуры плавления и затвердевания.

Часто при изготовлении стекла соду заменяют на Na2SO4 и С:

2 Na2SO4 + 2 SiO2 + C = 2 Na2SiO3 + 2 SO2 + CO2 (38)

Если заменить при варке стекла соду поташом, то получится тугоплавкое стекло. Прибавление борного ангидрида увеличивает твердость стекла, возрастает его химическая стойкость, и он становится менее чувствительным к изменению температуры.

Таким образом, изменяя состав, мы получаем стекла различного назначения: оптические стекла, стекла, окрашенные оксидами кобальта, хрома, железа, ванадия (рубиновое стекло). Добавление PbО позволяет получить стекла, защищаюшие от радиации.

В зависимости от состава исходного сырья различают следующие виды стекла.

Известково – натриевое стекло. Изготавливается из кварцевого песка и соды (или смеси сульфата натрия и угля). Это недорогое, легко размягчающееся, “нормальное стекло”. Бутылочное стекло еще дешевле, оно менее чистое, поскольку расплавленная масса содержит силикаты алюминия и железа (последний вызывает зеленую окраску стекла).

Известково – кальциевое стекло. Изготавливается из кварцевого песка, известняка и поташа. Расплавляется труднее, чем известковонатриевое стекло. Разновидность этого стекла – богемский хрусталь и крон, используемый в оптике.

Свинцово – калиевое стекло. Изготавливается из кварцевого песка, свинцового сурика Pb3O4 и поташа. Высокоплавкий материал с высоким коэффициентом светорассеяния. Применяется в оптике, в ювелирном деле (имитации драгоценных камней) и как свинцовый хрусталь для бытовых изделий.

Алюмоборосиликатное стекло. В этом стекле SiO2 частично заменен на B2O3 и Al2O3, для чего в расплавленную массу вводят гидроксид бора или буру Na2B4O7, а также каолин или полевые шпаты. Известно под названием “йенское стекло”. Оно весьма термостойкое и применяется для изготовления химической и бытовой посуды.

Специальные стекла, например, стекло, прозрачное для ультрафиолетового излучения; синее (кобальтовое) стекло, получаемое введением в расплав солей Со (II); молочное стекло, которое содержит TiO2 в качестве замутнителя, солнцезащитное стекло, содержащее хлорид серебра AgCl и вследствие этого темнеющее тем сильнее, чем интенсивнее солнечное освещение; глазури – очень легкоплавкие стекла, по большей части бессиликатные (фосфатные, боратные стекла).

Безопасное стекло, которое при разрушении не образует осколков (безосколочное стекло). Однослойное безопасное стекло получают резким охлаждением расплава стекломассы (закаливанием); на поверхности таким образом обработанного стекла возникают усилия сжатия, а внутри массы стекла – усилия растяжения. Многослойное безопасное стекло содержит несколько слоев стекла, разделенных пластмассовыми пленками.

Ситаллы (пирокерамы, витрокерамы) – материалы, образующиеся в результате массовой (объемной) кристаллизации стекломассы. Равномерная кристаллизация всей стекломассы обеспечивается специальным режимом термической или иной обработки; часто в исходное сырье для варки ситаллов включают особые добавки, например ТiO2, Cr2O3, фториды.

Эмали - мутные, часто окрашенные, легко плавящиеся стекла. Их наносят на поверхность металлов и сплавов для защиты от коррозии. Так называемые ювелирные эмали наносят на поверхность благородных металлов, меди или сплава томпак (материал для изготовления значков, орденов, брошек и т.д.). Высокая адгезия (сцепляемость) основного материала с застывшим эмалевым расплавом обеспечивается прослойкой оксидов, обычно оксидов никеля и кобальта.

При быстром охлаждении расплава SiO2 можно получить стекловидное состояние, так называемое кварцевое стекло. Кварцевое стекло представляет собой прекрасный материал, прозрачный для ультрафиолетовых лучей, химически инертный при низких температурах, и тугоплавкий, размягчающийся при температурах, близких к плавлению (1600 - 17000C). Из него делают трубки, изолирующие термопары, химическую аппаратуру, кварцевую оптику. Обладая ничтожным коэффициентом термического расширения, кварцевое стекло легко переносит резкое изменение температуры. Обработка кварцевого стекла (спаи, обтяжка, изгиб и т.д.) ведется с помощью ацетилено - кислородных горелок.

Жидкое стекло используется в сварочной технике для производства электродов, склеивая компоненты покрытия. Оно необходимо в литейном производстве для изготовления форм под заливку металлов; для изготовления кислотоупорного цемента, бетона, для керосинонепроницаемости штукатурок по бетону; для пропитки тканей, для изготовления огнезащитных красок по дереву; для химического укрепления слабых грунтов. Из жидкого стекла готовится стекловолокно, представляющее собой тончайшие капилляры с высокой прочностью, использующиеся в качестве изоляционного материала и как наполнитель для пластмасс (стеклопластики). Из волокна изготавливают и стеклоткань.

Стойкие соли кремниевой кислоты высокой концентрации применяются при изготовлении бумаги, при обработке воды. Осторожно высушенный и прокаленный гель кремниевой кислоты является хорошим адсорбентом для поглощения, главным образом, паров жидкостей (вода, бензин, эфир и т. д.). Такой адсорбент носит название «силикагеля» и широко применяется для регенерации растворителей, осушки газов и т. п.

Силикатная керамика. Это материалы и изделия, получаемые при обжиге оформленной сырой глины, иногда с присадками кварцевого песка и полевого шпата. Технологический процесс заканчивается после полного спекания (но не сплавления) компонентов. Керамические материалы состоят в основном из силиката алюминия (муллит 3Al2O3·2SiO2). Тонкостенная керамика – это различная химическая и техническая посуда; толстостенная керамика – это огнеупорные строительные изделия. В зависимости от степени спекания различают спекшуюся и пористую керамику.

Пористая керамика образуется при температуре спекания в интервале 900-12000C. Водопроницаема, поэтому изделия покрыты глазурью для обеспечения водонепроницаемости, непрозрачности, легко царапается сталью. Имеет несколько разновидностей: обычный кирпич – строительный материал, кровельная черепица, дренажные трубы. Красный цвет обычного кирпича объясняется наличием Fe2O3; клинкер – достаточно прочный кирпич, обожженный вплоть до остекловывания; шамот – термостойкий кирпич.

Из красной пористой керамики готовят обычные изделия – цветочные горшки, гончарные изделия и кафель, а из белой пористой керамики (фаянса) производят белые изделия – бытовую посуду, сантехнические установки, облицовочные плитки. Для получения белой керамики используют очищенное от примеси железа сырье. Изделия подвергают двойному обжигу с промежуточным покрытием глазурями, и, если необходимо, окрашиванием.

Спекшаяся керамика образуется при температуре спекания в интервале 1200-15000C. Это плотный водонепроницаемый материал, сталью почти не царапается. В зависимости от качества сырья получают каменную спекшуюся керамику и фарфор.

Каменная керамика – непросвечивающий материал. Ее изготавливают из глины, каолина, кварца и полевого шпата. Формуются в такие изделия, как кухонные раковины, канализационные трубы и метлахская плитка; изделия подвергаются двойному обжигу с промежуточным покрытием глазурью.

Фарфор – просвечивающий, белый, твердый, звенящий материал. Исходным веществом для получения фарфора служит чистый, отмученный каолин, кварцевый песок и полевой шпат (соотношение 2:1:1). После выдерживания смеси в течение некоторого времени ей придают определенную форму на гончарном круге или с помощью литья, медленно высушивают, проводят предварительный обжиг при 9000С, погружают в жидкую глазурь (суспензия извести, полевого шпата и каолина) и окончательно обжигают при 14000С. При обжиге всегда происходит усадка, и размеры изделия уменьшаются. Краски наносят на или под глазурь.

Ультрамарин - ярко-синий, пигмент, серосодержащий алюмосиликат натрия. Получают спеканием каолина, кварца, сульфата натрия и угля при 7300С. В природе встречается в виде минерала лазурита.

Кремнийорганические соединения. Для кремния известно большое число соединений, в которых атомы кремния химически связаны с атомами углерода. Эти соединения называются кремнийорганическими. Датой первого в истории синтеза кремнийорганического вещества Si(C2H5)4 считают 1863 г. К наиболее ценным из органических соединений кремния относят эфиры [Si(OR)4] и галогенэфиры ортокремниевой кислоты (X4Si(OR)4-n, где Х – галоген). Кремнийорганические соединения служат основой для разработки способов получения высокомолекулярных соединений.

 

В 1936 г. академик К.А. Андрианов синтезировал сложные эфиры веществ, являющихся производными ортокремниевой кислоты, в которой 1, 2 или 3 гидроксогруппы заменены углеводородными радикалами:

 

СН3 СН3 О – СН3

| | |

СН3 – Si – О – СН3 СН3 – Si – О – СН3 СН3 – Si – О – СН3

| | |

СН3 О – СН3 О – СН3

 

Вещества, получающиеся при гидролизе смеси (CH3)2Si(OCH3)2 и (СH3)3SiOCH3, могут конденсироваться согласно схеме:

 

СН3 СН3 СН3 СН3

| | | |

СН3 – Si – ОН + ОН – Si – ОН + ОН – Si – ОН + ОН – Si – СН3

| | | |

СН3 СН3 СН3 СН3

 

СН3 СН3 СН3 СН3

| | | |

СН3 – Si – О – Si – О – Si – О – Si – СН3 + 3Н2О.

| | | |

СН3 СН3 СН3 СН3

 

Связь между атомами кремния и кислорода (силоксановая связь Si – O – Si) обладает высокой энергией. Это ее качество используется при разработке термостойких кремнийорганических полимеров.

При небольшой степени конденсации (до 10 атомов Si) получаются жидкости, применяемые в качестве смазки, мало изменяющие вязкость в широком интервале температур при хорошей химической стойкости. При более высокой степени конденсации образуются смолообразные вещества. Они применяются при изготовлении термостойких (до 7000С) стеклопластиков и для электроизоляционной защиты термоэлектродных проводов микротермопар (до 1000-12000С). Органо-силикатные материалы, кроме того, используются для предохранения от коррозии монтажных соединений (в крупнопанельном строительстве) и металлоконструкций, для защиты фасадов зданий от воздействий атмосферы.

На основе кремнийорганических смол получают каучукоподобные материалы, сохраняющие свою эластичность при температурах от – 60 до + 2000С, и не разрушающиеся даже при 3000С. Сейчас в промышленности в больших масштабах применяются кремнийорганические каучуки на основе полиорганосилоксанов (силиконов):

 

R R

| |

– Si – О – Si –

| |

R R

 

Получен новый класс соединений – имидополиорганосилоксаны. Они обладают очень высокой термо- и кислотостойкостью. В настоящее время широко распространены материалы, получаемые на основе систем: полиметилфенилсилоксан (ПМФС) – мусковит, ПМФС – хризотиловый асбест и другие. Они надежно работают при 5000С. При введении добавок – боросиликатных, свинцовоцинкборатных стекол – органосиликатные покрытия выдерживают температуру до 10000С. А применение оксидов ванадия, бария, вольфрама и других почти в 100 раз увеличивает электроизоляционные свойства покрытий.

 

 

Литература:

 

1. Глинка Н.Л. Общая химия. Л.: Химия, 1988.

2. Фролов В.В. Химия. М.: Высшая школа, 1975.

3. Коровин Н.А. Курс общей химии. М.: Высшая школа, 1990.

4. Крицман В.В. Книга для чтения по неорганической химии. Ч.П. М.: Просвещение, 1984.

5. Горшков В С. Физическая химия силикатов. М.: Высшая школа, 1988.

6. Химия: Справочное издание / В. Шретер, К – Х. Лутеншлегер, Х Бибрак и др.: Пер. с нем. М.: Химия, 1989.

 

 



ss="hr1"> ⇐ Назад
  • 12