Оксид кремния (IV) и кремниевые кислоты

Оксид крем­ния SiO2 - твердое, очень тугоплавкое вещество (температура плавления более 1700 °С), широко распространенное в природе, где оно встречается главным образом в виде минерала кварца, а также кристобалита и тридимита.

При обычных температурах устойчивой модификацией яв­ляется кварц, с ростом температуры наблюдаются полиморфные превращения:

Кремнезем всех модификаций в виде мономера не существу­ет; он всегда полимерен и «построен» из тетраэдров [SiO4], обра­зующих очень прочную атомную решетку

Каждый атом кремния в кристаллах (SiO2)n тетраэдрически окружен четырьмя атомами кислорода, каждый из которых является мостиковым. Через общий атом кислорода тетраэдры [SiO4] под разными углами связываются друг с другом, образуя непрерывную трехмерную решетку; взаимное расположение тетраэдров [SiO4] в пространстве определяет ту или иную модификацию кремнезема.

В различных модификациях кремнезема прочность связей неодинакова. Это влияет на величину углов Si-О-Si и расстояний Si-О, например угол связи Si-О-Si в различных модификациях кремнезема изменяется от 120 до 180°. Переходы кварц-три­димит-кристобалит сопровождаются разрывом и преобразова­нием связей, что может происходить только при высоких темпе­ратурах.

Кварц. Нередко встречается в природе в форме чрезвычайно хорошо образованных кристаллов, иногда значительной величи­ны. Кристаллы образованы из тетраэдров, расположенных винто­образно вокруг центральной оси, в виде спирали. В одном и том же кристалле направление спирали может быть противополож­ным. Такие кристаллы являются оптическими изомерами. Они вращают плоскость поляризации света, причем могут быть как право-, так и левовращающими. Те и другие кристаллы отлича­ются как предмет от своего зеркального изображения.

Кварц используется в различных областях науки и техники, и его кристаллы часто выращиваются искусственно. Некоторые разновидности кварца носят особые названия. Прозрачные бесцветные кристаллы называют горным хрусталем. Встречаются и окрашенные разновидности кварца: розовый кварц, фиолетовый (аметист), темно-коричневый (дымчатый топаз), зеленый (хризопраз) и др. Мелкокристаллическая модификация кварца с примесями других веществ называется халцедоном. Разновидно­стями халцедона являются агат, яшма и др. Горный хрусталь и окрашенные разновидности кварца используют как драгоценные и полудрагоценные камни.

Тридимит встречается в вулканических породах, однако в очень небольших количествах. Известен тридимит и метеоритного происхождения.

Кристобалит в природе иногда встречается в виде мелких кристаллов, включенных в лаву, подобно тридимиту. Тридимит и кристобалит обладают более «рыхлой» структурой, нежели кварц. Так, плотность кристобалита, тридимита и кварца равна 2,32; 2,26 и 2,65 г/см3 соответственно.

Расплав кремнезема при медленном охлаждении легко образует аморфное кварцевое стекло. Кремнезем в виде стекла встречается и в природе. Плотность аморфного стекла равна 2,20 г/см3 - ниже, чем у всех кристаллических модификаций. Кварцевое стек­ло имеет незначительный температурный коэффициент расшире­ния, поэтому из него готовят лабораторную посуду, устойчивую к резким изменениям температуры.

Все модификации кремнезема в воде практически нераство­римы (при температуре 25 °С растворимость кварца составляет 7, кристобалита - 12, тридимита - 16, кварцевого стекла - 83 мг/л). Поэтому при обычных условиях на них действуют лишь растворы щелочей и плавиковая кислота:

SiO2 + 2КОН = К2SiO3 + Н2О, (1)

SiO2 + 4НF = SiF4↑ + 2Н2О. (2)

Последняя реакция используется при «травлении» стекла.

Приставленый диоксид кремния реагирует с основными оксидами, щелочами (реакция (1)) и карбонатами с образованием силикатов:

SiO2 + СаО = СaSiO3, (3)

SiO2 + Na2СО3 = Nа2SiO3 + СО2. (4)

Реакции (3) и (4) лежат в основе промышленного по­лучения различных стекол, а также цемента. Так, со­став обычного стекла (например, оконного, для изготовления по­суды) выражается формулой Na2О.СаО.6SiO2. Такое стекло получают сплавлением смеси соды, песка и известняка. Процесс проводят при температуре ~1400 °С до полного удаления газов:

Na2СО3 + СаСО3 + 6SiO2 = Nа2О.СаО.6SiO2 + 2СО2↑.

Для получения специальных сортов стекла - огнеупорного, «небьющегося» - при варке добавляют оксиды бария, свинца, бора. Для получения цветных стекол вносят также различные до­бавки, например добавка оксида кобальта Со2О3 дает синий цвет, оксида хрома Сr2О3 - зеленый, двуоксида марганца МnО2 - ро­зовый.

Оксид SiO2 является ангидридом ряда кремниевых кислот, состав которых можно выразить общей формулой хSiO2∙2O, где х и у - целые числа: 1) х = 1, у = 1: SiO2.Н2О, т.е. Н2SiO3 - метакремниевая кислота; 1) х = 1, y = 2: SiO2.2О, т.е. ортокремниевая кислота; 1) x = 2, у = 1: 2SiO2.Н2О, т.е. Н2Si2O5 – двуметакремниевая кислота.

Кислоты, молекулы которых содержат более одной молекулы SiO2, относятся к поликремниевым.

Самая простая из кремниевых кислот - Н2SiO3, которую часто называют просто кремниевой, а ее соли - силикатами. Из силикатов в воде растворимы только силикаты натрия и калия, остальные силикаты - тугоплавкие, нерастворимые в воде вещества.

Растворы силикатов мутнеют при стоянии на воздухе, так как находящийся в нем СО2 вытесняет кремниевую кислоту из ее со­лей (Н2SiO3 слабее угольной кислоты; константа диссоциации Н2SiO3 по первой ступени равна К1 = 2,2.10-10).

Н2SiO3 практически нерастворима в воде - это свойство используют как качественную реакцию для обнаружения силикат-ионов:

Na2SiO3 + СО2 + Н2О = Nа2СО3 + Н2SiO3↓.

Получают силикаты сплавлением SiO2 со щелочами или кар­бонатами.

Концентрированные растворы силикатов натрия и калия называют жидким стеклом, они имеют сильнощелочную реакцию вследствии того, что сильно гидролизованы:

К2SiO3 + Н2О 2КОН + Н2SiO3↓.

Жидкое стекло используют, например, для изготовления клея, водонепроницаемых тканей.

Цемент очень широко используется в строительстве как вяжущий материал, который при смешивании с водой затвердевает. Обычно цемент получают в больших вращающихся печах, где производят обжиг и размол различных силикатов (при температу­ре -1000 °С).

Различают несколько типов цементов, однако условно можно выделить два типа цементов по принципу их «свертывания» - обычный цемент и портландский цемент. Процесс «схватывания» обычного цемента, состоящего из силиката кальция, происходит вследствие образования карбоната кальция за счет углекислого газа воздуха:

СаО.SiO2 + СО2 + Н2О = СаСО3↓ + Н2SiO3↓.

При схватывании портландского цемента углекислота не уча­ствует в процессе, а происходит гидролиз силикатов с последующим образованием нерастворимых кристаллогидратов:

Са3SiO5 + Н2О = Са2SiO4 + Са(ОН)2,

Са2SiO4 + 4Н2О = Са2SiO4.2O↓.

· Карбиды и силициды

· Соединения углерода и кремния с металлами — карбиды и силициды, помимо рассмотренных реакций получают также взаимодействием кремния с гидридами ме­таллов, например:

· 2СаН2 + Si = Са2Si + 2Н2↑.

· Все эти реакции протекают при высоких температурах. Среди карбидов выделяют так называемые «метаниды» и «ацетилениды». Первые рассматривают как производные метана, содержащие углерод в степени окисления -4 (Ве2С, Аl4С3), вто­рые — как производные ацетилена со степенью окисления угле­рода -1 (Li2С2, Аg2С2, Сu2С2, СаС2). Ацетилениды серебра и ме­ди (I) могут быть легко получены при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди (I). Большинство метанидов и ацетиленидов активно реагируют с водой (тем более с кислотами), выделяя соответствую­щие углеводороды:

· СаС2 + 2Н2О = Са(ОН)2 + С2Н2↑,

· Al4C3 + 12H2O = 4Al(OH)3↓ + 3CH4↑,

· Аg2С2 + 2НСl = 2АgСl↓ + С2Н2↑.

· В отличие от карбидов, с водой и кислотами взаимодействуют лишь силициды щелочных или щелочноземельных металлов, вы­деляя простейшее водородное соединение кремниямоносилан, которое чаще всего называют просто силан SiН4:

· Са2Si + 4НСl = 2СаСl2 + SiН4↑.

· Силан — бесцветный газ, имеющий запах плесени, самопро­извольно воспламеняющийся на воздухе, сгорая до SiO2 и воды:

· SiН4 + 2О2 = SiO2 + 2Н2О.

· Щелочи очень легко разлагают силан по уравнению:

· SiН4 + 2КОН + Н2О = К2SiO3 + 4Н2↑,

· вода также гидролизует силан, но значительно медленнее:

· SiН4 + 2Н2О = SiO2 + 4Н2↑.

· При нагревании выше 400 °С без доступа воздуха силан рас­падается на кремний и водород (один из способов получения кремния):

· SiН4 = Si + 2Н2↑.

· Кроме моносилана, известны также дисилан Si2Н6, трисилан Si3Н8, тетрасилан Si4Н10 и т.д. В индивидуальном состоянии вы­делены соединения лишь до Si6Н14 включительно. Все эти соеди­нения относятся к гомологическому ряду силанов, которым отве­чает общая формула SinН2n+2. Подобно алканам, силаны бесцветны, первые члены гомологического ряда при обычных условиях газообразны, следующие — жидкости. Химическая ак­тивность силанов и углеводородов различна: в противополож­ность достаточно инертным алканам, силанывесьма реакционноспособны. Это объясняется меньшим по сравнению с углеродом сродством кремния к водороду и очень большим сродством кремния к кислороду. К тому же связиSi-Si менее прочны, чем связи С—С. В отличие от связи С-Н связь Si-Н имеет более ионный характер.

· Энергии связей Si-Э и С-Э.

Связь Энергия связи, кДж/моль Связь Энергия связи, кДж/моль
Si-H Si-Si Si-O Si-C С-Н С-С С-О С-Si

· Малой прочностью связи Si-Si обусловлена ограниченность гомологического ряда силанов.

· Среди карбидов и силицидов особое место занимает карборунд SiC, который можно назвать как карбидом кремния, так и силицидом углерода. Карборунд имеет высокую температуру плавления, благодаря алмазоподобной структуре; его твердость близка к твердости алмаза. Химически SiC очень стоек.

· Понятие о коллоидных растворах

В природе и технике часто встречаются дисперсные системы, в которых одно вещество равномерно распределено в виде частиц внутри другого вещества.

В дисперсных системах различают дисперсную фазу - мелкораздробленное вещество и дисперсионную среду - однородное вещество, в котором распределена дисперсная фаза. К дисперсным системам относятся обычные (истинные) растворы, коллоидные растворы, а также суспензии и эмульсии. Они отличаются друг от друга прежде всего размерами частиц, т. е. степенью дисперсности (раздробленности).

Системы с размером частиц менее 1 нм представляют собой истинные растворы, состоящие из молекул или ионов растворенного вещества. Их следует рассматривать как однофазную систему. Системы с размерами частиц больше 100 нм - это грубодисперсные системы - суспензии и эмульсии.

Суспензии - это дисперсные системы, в которых дисперсной фазой является твердое вещество, а дисперсионной средой - жидкость, причем твердое вещество практически нерастворимо в жидкости.

Эмульсии - это дисперсные системы, в которых и дисперсная фаза и дисперсионная среда являются жидкостями, взаимно не смешивающимися. Примером эмульсии является молоко, в котором мелкие шарики жира плавают в жидкости.

Суспензии и эмульсии - двухфазные системы.

Коллоидные растворы - это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 1 до 100 нм. Как видно, коллоидные растворы по размерам частиц являются промежуточными между истинными растворами и суспензия­ми и эмульсиями. Коллоидные частицы обычно состоят из большого числа молекул или ионов.

Коллоидные растворы иначе называют золями. Их получают дисперсионными и кондесационными методами. Диспергирование чаще всего производят при помощи особых «коллоидных мель­ниц». При конденсационном методе коллоидные частицы образуются за счет объединения атомов или молекул в агрегаты. При протекании многих химических реакций происходиткон­денсация и образуются высокодисперсные системы (выпадение осад­ков, протекание гидролиза, окислительно-восстановительные реакции и т.д.).

1 нм - нанометр (1 нм = 10-9 м).

В отличие от истинных растворов для золей характерен эффект Тиндаля, т. е. рассеяние света коллоидными частицами. При пропускании через золь пучка света появ­ляется светлый конус, видимый в затемненном помещении . Так можно распознать, является данный раствор коллоидным или истинным.

Одним из важных свойств золей является то, что их частицы имеют электрические заряды одного знака. Благодаря этому они не соединяются в более крупные частицы и не осаждаются. При этом частицы одних золей, например металлов, сульфидов, кремниевой и оловянной кислот, имеют отрицательный заряд, других, например гидроксидов, оксидов металлов, — положительный заряд. Возникновение заряда объясняется адсорбцией коллоидными частицами ионов из раствора.

Для осаждения золя необходимо, чтобы его частицы соединились в более крупные агрегаты. Соединение частиц в более крупные агрегаты называется коагуляцией, а осаждение их под влиянием силы тяжести - седиментацией.

Обычно коагуляция происходит при прибавлении к золю: 1) элект­ролита, 2) другого золя, частицы которого имеют противоположный заряд, и 3) при нагревании.