Причины фобий 4 страница

Четвертая фаза вытекала непосредственно из этой программы массового интервьюирования. Ввиду обнаружившейся важной роли соц. групп на рабочих местах и для изучения таких групп были организованы лабораторные наблюдения за сборкой электрических блоков. С этой целью более б месяцев проводились наблюдения и интервьюирование 14 мужчин, что позволило получить богатую информ. в отношении рабочих групп.

Наконец, на пятой фазе была реализована обширная программа консультирования работников. Были наняты консультанты, к к-рым могли обращаться работники и на к-рых они могли полагаться как на справедливых и беспристрастных агентов. В рез-те открытия таких коммуникационных каналов мастера могли получать помощь в улучшении их поведения. В целом исследователи описали целый ряд последовавших улучшений во внутриорганизационных коммуникациях.

Кан указывал на то, что рез-ты всех этих научных исслед. не могут объясняться лишь одним X. э. Проведенный им анализ говорит о том, что важную роль в возникновении этого эффекта играет участие работника в принятии важных решений.

См. также Изучение аттитюдов наемных работников, Полевые эксперименты, Промышленная психология, Промышленная и организационная психология

Ф. Бенсон

 

Хромосомные нарушения (chromosome disorders)

 

В 1962 г., после того как в учебниках на протяжении 30 лет утверждалось, что клетки чел. содержат 48 хромосом, Джо Хин Тио и Альберт Леван, вырастив культуру этих клеток в лаборатории, обнаружили в них только 23 пары, т. е. 46 хромосом! Этот факт чрезвычайно важен для понимания таких хромосомных болезней, как синдром Дауна, при к-ром в каждой клетке находится по 47 хромосом.

Большая часть сведений о хромосомных перестройках, вызывающих фенотипические или телесные изменения и аномалии, была получена в рез-те исслед. генотипа (расположения генов в хромосомах слюнных желез) обыкновенной плодовой мушки Drosophila melanogaster, хотя те же самые перестройки, по-видимому, происходят в клетках чел. и др. организмов. Несмотря на то что мн. болезни чел. имеют наследственную природу, лишь в отношении их небольшой части достоверно известно, что они вызваны хромосомными аномалиями. Только из наблюдений за фенотипическими проявлениями мы можем заключить, что произошли те или иные изменения генов и хромосом.

Хромосомы — это организованные в виде двойной спирали молекулы дезоксирибонуклеиновой кислоты (ДНК), образующей химическую основу наследственности. Считается, что X. н. возникают в рез-те перестройки порядка расположения или числа генов в хромосомах. Гены представляют собой группы атомов, входящих в состав молекул ДНК. Как известно, молекулы ДНК определяют характер молекул рибонуклеиновой кислоты (РНК), к-рые выполняют функцию «доставщиков» генетической информ., определяющей структуру и функцию органических тканей. Эта первичная генетическая субстанция, ДНК, действует через посредство цитоплазмы, выполняющей функцию катализатора в изменении свойств клеток, формируя кожу и мышцы, нервы и кровеносные сосуды, кости и соединительную ткань, а тж др. специализированные клетки, но не допуская изменений самих генов в ходе этого процесса. Почти на всех этапах строительства организма занято множество генов, и потому совсем не обязательно, чтобы каждый физ. признак являлся рез-том действия одного гена.

Разнообразные изменения хромосом имеют рез-том следующие структурные и количественные нарушения:

Разрыв хромосом.Хромосомные перестройки могут вызываться под воздействием рентгеновских лучей, ионизирующей радиации, возможно, космических лучей, а тж мн. др., пока неизвестных нам, биохимических или средовых факторов.

Рентгеновские лучи могут вызвать разрыв хромосомы; в процессе перестройки сегмент или сегменты, оторвавшиеся от одной хромосомы, м. б. утеряны, в рез-те чего возникает мутация или фенотипическое изменение. Так, напр., теперь становится возможной экспрессия рецессивного гена, обусловливающего определенный дефект или аномалию, поскольку нормальный аллель (парный ген в гомологичной хромосоме) утерян и вследствие этого не может нейтрализовать воздействие дефектного гена. В тех случаях, когда хромосомные нехватки у челов. зародыша имеют летальный эффект, ребенок чаще всего не доживает до родов, так что летальные гены не оказывают неблагоприятного влияния на эволюцию вида.

Кроссовер.Пары гомологичных хромосом закручены в спираль подобно дождевым червям во время спаривания и могут разрываться в любых гомологичных точках (т. е. на одном уровне образующих пару хромосом). В процессе мейоза (редукционного деления, имеющего место при образовании гамет, или половых клеток — яйцеклеток и спермиев) происходит разделение каждой пары хромосом т. о., что только одна хромосома из каждой пары входит в образовавшуюся яйцеклетку или спермий. Когда происходит разрыв, конец одной хромосомы может соединяется с оторвавшимся концом др. хромосомы, а два оставшихся куска хромосом связываются вместе. В рез-те образуются две совершенно новые и разные хромосомы. Этот процесс наз. кроссинговером.

Дупликация или нехватка генов.При дупликации участок одной хромосомы отрывается и прикрепляется к др., гомологичной хромосоме, удваивая уже существующую в ней группу генов. Приобретение хромосомой дополнительной группы генов обычно наносит меньший вред, чем утрата генов др. хромосомой. К тому же при благоприятном исходе дупликации ведут к образованию новой наследственной комбинации. Хромосомы с потерянным терминальным участком (и нехваткой локализованных в нем генов) могут приводить к мутациям или фенотипическим изменениям.

Транслокация.Сегменты одной хромосомы переносятся на др., негомологичную ей хромосому, вызывая стерильность особи. В этом случае любое негативное фенотипическое проявление по крайней мере не м. б. передано последующим поколениям.

Инверсия.Хромосома разрывается в двух и более местах и ее сегменты инвертируются (поворачиваются на 180°) перед тем, как соединиться в том же порядке в целую реконструированную хромосому. Это самый распростр. и самый важный способ перегруппировки генов в эволюции видов. Однако новый гибрид может стать изолянтом, поскольку обнаруживает стерильность при скрещивании с первоначальной формой.

Эффект положения.В случаях изменения положения гена в той же хромосоме у организмов могут обнаруживаться фенотипические изменения.

Полиплоидия.Сбои в процессе мейоза (хромосомного редукционного деления в ходе подготовки к репродукции), к-рые затем обнаружатся в зародышевой клетке, могут удваивать нормальное число хромосом в гаметах (сперматозоидах или яйцеклетках). Триплоиды обладают тремя полными наборами хромосом в гаметах вместо только что упомянутого удвоенного. А дупликации без расхождения хромосом в митозе (обычном клеточном делении) приводят к созданию тетраплоидных клеток с четырьмя гомологичными хромосомами каждого вида вместо двух. Вообще говоря, полиплоидные клетки присутствуют в нашей печени и нек-рых др. органах, обычно не нанося сколько-нибудь заметного вреда. Когда же полиплоидия проявляется в наличии одной-единственной «лишней» хромосомы, то появление последней в генотипе может привести к серьезным фенотипическим изменениям. К их числу относится синдром Дауна (СД, или «монголизм»), при к-ром в каждой клетке содержится дополнительная 21-я хромосома. Среди потомства с СД встречается незначительный процент рождений с осложнениями, при к-рых эта дополнительная аутосома (неполовая хромосома) становится причиной недостаточного веса и роста новорожденного и задержки последующего физ. и умственного развития. Жертвы СД имеют 47 хромосом. Причем дополнительная 47-я хромосома обусловливает у них избыточный синтез фермента, разрушающего незаменимую аминокислоту триптофан, к-рая встречается в молоке и необходима для нормального функционирования клеток мозга и регуляции сна. Лишь у незначительного процента родившихся с СД эта болезнь определенно носит наследственный характер; к тому же возможна дородовая диагностика ее методом амниоцентеза.

См. также Наследственные болезни, Доминантные и рецессивные гены, Наследуемость

X. К. Финк

 

 

Ц_

 

Цветовое зрение (color vision)

 

Зрительный опыт большинства позвоночных отличается чувствительностью к интенсивности электромагнитного излучения в границах свойственного им диапазона видимых длин волн, от примерно 380 до 760 нм. Помимо этой ахроматической (бесцветной) чувствительности, некоторые виды рыб, птиц, рептилий и млекопитающих (прежде всего чел. и остальные приматы) тж обладают чувствительностью к цвету (цветовому тону) длины волны и видимой чистоте или интенсивности (насыщенности) цвета. Большинство людей начинают видеть коротковолновую часть видимого спектра как голубоватый цвет (около 480 нм), средневолновую — как зеленоватый (около 510 нм) и желтоватый (ок. 580 нм), а длинноволновую — как красноватый цвет (около 700 нм). Наряду с этими различиями в цветовом тоне цвет может восприниматься как сильно насыщенный (напр., темно-красный) или слабонасыщенный (напр., розовый).

Типы цветового зрения. По определению, Ц. з. предполагает дифференциацию между по крайней мере одной частотой видимого монохроматического света и белым светом сравнимой интенсивности, Сверх этой минимальной способности существуют значительные межвидовые и внутривидовые различия в степени возможностей цветоразличения. Для индивидов с нормальным или трихроматическим зрением (трихроматов) любая длина волны видимого спектра отличима от белого. Кроме того, для субъективного попарного сравнения всех видимых длин волн трихроматам требуется комбинация трех др. монохроматических источников света (обычно, коротковолнового, средневолнового и длинноволнового).

Однако, не все трихроматы обязательно имеют сопоставимое Ц. з. Как показано в табл. 1, им присущи различные типы аномалий Ц. з. Хотя трихроматы с аномалиями способны видеть полный спектр цветов, воспринимаемых обладателями нормального трихроматического зрения, для распознавания цветов в границах диапазона их сниженной чувствительности цветоаномалам могут требоваться световые раздражители повышенной интенсивности. Кроме того, в границах этого аномального диапазона цвета видятся как бы выцветшими или менее насыщенными, а иногда обнаруживается еще и сниженная способность различать соседние цвета спектра.

 

Таблица 1. Категории цветового зрения

Классификация Процент встречаемости у людей Видимость спектра
Мужчины Женщины
Трихроматизм
Нормальный     Нормальный
Аномальный      
Протаномалия 0,02 Сниженная яркость, насыщенность и различимость цветовых тонов в длинноволновой части спектра
Дейтераномалия 4,9 0,38 Сниженная яркость, насыщенность и различимость цветовых тонов в средневолновой части спектра
Тританомалия редко   Сниженная яркость, насыщенность и различимость цветовых тонов в коротковолновой части спектра
Дихроматизм
Протанопия 0,02 Серый в нейтральной точке 494 нм; синий ниже, желтый выше
Дейтеранопия 1,1 0,01 Серый в нейтральной точке 499 нм; синий ниже, желтый выше
Тританопия 0,002 0,001 Серы и в нейтральной точке 570 нм; зеленый ниже, красный выше
Тетартанопия редко   Серый в нейтральных точке 470 нм и 580 нм; зеленый между ними, красный выше и ниже
Монохроматизм
Палочковый 0,03 0,002 Серый
Неврологический     Серый
Синих колбочек     Серый; нек-рые оттенки синего и желтого

Полное описание каждой аномалии крайне сложно, по нек-рым вопросам ученые пока не пришли к общему мнению. Говоря коротко, в классификации может учитываться чувствительность к яркости, рез-ты теста нейтральной точки, теста подбора цветов Рэлея, способность цветоразличения и воспринимаемая насыщенность. (Данные взяты из G. Wyszecki & W. S. Stiles, Color science: Concepts and methods, quantitative data and formulas, и F. A. Gelrad, The human senses.)

 

Дифференциальная диагностика различных типов аномального трихроматизма — напр., протаномального или дейтераномального — может проводиться с помощью теста Рэлея, или аномалоскопа. При нормальном трихроматическом зрении существует единственная (подбираемая на аномалоскопе) смесь зеленого света (535 нм, желтовато-зеленый) с красным (670 нм, желтовато-красный), к-рую невозможно отличить на глаз от желтого света (589 нм, красновато-желтый). У лиц с аномальным трихроматизмом подбираемая ими на аномалоскопе смесь красного и зеленого для получения требуемого желтого цвета отличается от таковой у лиц с нормальным трихроматическим зрением. Наблюдателям с протаномальным трихроматизмом для получения желтого цвета требуется добавить в смесь больше красного, тогда как наблюдателям с дейтераномальным трихроматизмом для получения того же цвета требуется смесь с большим содержанием зеленого цвета.

Дихроматы обнаруживают более серьезное ограничение Ц. з. по сравнению с аномальными трихроматами: не все видимые длины волн они способны отличить от белого света, и, кроме того, любые длины волн видимого спектра могут попарно подбираться посредством смешивания только двух других длин волн. Классиф. дихроматического зрения в противоположность трихроматическому основывается на тесте нейтральной точки (neutral point test), к-рый проверяет способность к различению множества отдельных монохроматических длин волн и белого света. Если трихроматы способны отличить каждую отдельную длину волны от белого света в условиях уравненной яркости, у дихроматов обнаруживается узкий участок видимого спектра, в к-ром они не могут этого сделать.

Эта узкая полоса длин волн, неотличимых от белого света, называется нейтральной точкой, а ее местоположение в спектре определяет конкретный тип дихроматизма. Как показано в табл. 1, протанопия и дейтеранопия связаны с возможностью видеть голубой и желтый, но не красный или зеленый цвета. Наоборот, тританопия и тетартанопия позволяют видеть красный и зеленый, но не голубой или желтый.

Монохроматы способны подобрать пару любой волне видимого спектра только регулирую интенсивность единственной волны другой длины. За возможным исключением ограниченного цветового зрения, связанного с монохроматизмом синих колбочек, монохроматы не видят цвета.

Насыщенность цветового спектра.Субъективную насыщенность можно оценить путем определения того, до какой степени монохроматический свет можно разбавлять добавлением; белого света, чтобы эта смесь стала неотличимой от белого света равнозначной яркости. Чем больше белого света можно добавить в такую смесь (до достижения точки, в к-рой эту комбинацию невозможно отличить от белого), тем выше субъективная насыщенность цветового тона.

Способность к цветоразличению. О богатстве Ц. з. можно отчасти судить по числу отдельных цветов, к-рые индивид способен видеть. Степень такой уникальности оценивается способностью различать соседние цвета спектра, измеряемой отношениями Вебера ∆λ / λ для цветоразличения.

Теории цветового зрения. Для современных теорет. представлений о механизмах, лежащих в основе Ц з., характерно слияние двух объяснений, первоначально считавшихся несовместимыми. Одно объяснение — трихроматическая теория — было выдвинуто Томасом Юнгом и Германом фон Гельмгольцем, к-рые подчеркивали корреспондирующую активность колбочек, максимально чувствительных к красному, зеленому или синему цвету. Др. объяснение — теория процесса-оппонента — было предложено Эвальдом Герингом и развито Лео Гурвичем и Доротеей Джеймсон. Согласно их подходу, ощущения красного—зеленого, так же как и синего—желтого, яв-ся антагонистическими процессами. Разногласия между этими двумя подходами в настоящее время устранены: трихроматическая теория описывает рецепторную активность, а теория процесса-оппонента применяется для описания интегративных процессов высшего порядка на уровне зрительного нерва и коры головного мозга.

См. также Зрительное восприятие, Нейрохимия, Теории зрения

Дж. Л. Фоубс

 

Центральная нервная система (central nervous system)

 

ЦНС — это та часть НС, к-рая находится внутри черепа и позвоночного столба, получает нервные импульсы от расположенных по всему телу сенсорных рецепторов, регулирует происходящие в организме процессы, организует и направляет поведение. Анатомически ЦНС состоит из головного и спинного мозга, «плавающих» внутри полости черепа и позвоночного канала в вязкой среде, называемой спинномозговой жидкостью, или ликвором. Ликвор заполняет полости головного и спинного мозга и служит в качестве защитной подушки, предохраняющей их от повреждений. Ткань ЦНС, кроме того, защищена тремя оболочками, называемых мозговыми. Наружная и самая прочная, твердая мозговая оболочка (dura mater)прикреплена к внутренней поверхности черепа и позвоночного канала и, наподобие кожуха, окружает довольно тонкую мембрану из эластичной волокнистой ткани — паутинную оболочку (arachnoid), внутри к-рой циркулирует ликвор. Мягкая мозговая оболочка (pia mater), являясь внутренней, плотно соединена с поверхностью головного и спинного мозга.

Основной структурной единицей нервной ткани яв-ся нервная клетка, или нейрон, — специализированная клетка удлиненной формы (длиной от нескольких микрон до нескольких футов [С учетом длины аксона. — Примеч. науч. ред.]), чья повышенная реактивность и проводимость позволяет ей распространять, или проводить, электрический импульс вдоль своей протяженной части, а также хим. путем возбуждать соседние нейроны, к-рые передают возбуждение дальше в точках специализированных переходов, наз. синапсами. НС состоит из миллиардов нейронов, к-рые связывают между собой все части организма, контролируя и регулируя его работу. Нейроны-рецепторы, подобно ветвям дерева, ведут внутрь, к более крупным ответвлениям, а от них к большим стволам, называемым нервами, к-рые входят в ЦНС и направляются вверх к головному мозгу, образуя восходящие пути. Нейроны-эффекторы дают начало нисходящим путям, к-рые выходят из ЦНС в виде многократно разветвляющихся нервов, чье назначение — регулировать работу всех мышечных тканей и, следовательно, деятельность всего организма. Двенадцать билатеральных пар черепных нервов выходят непосредственно из ствола головного мозга. От спинного мозга отходит 31 билатеральная пара спинномозговых нервов, к-рые выходят из ЦНС через отверстия между соседними позвонками. Каждый спинномозговой нерв состоит из входящих (рецепторных) и выходящих (эффекторных) волокон, но в месте соединения со спинным мозгом разделяется на задние (сенсорные) и передние (моторные) корешки.

Т. о., спинной мозг яв-ся общей шинной структурой для восходящих и нисходящих нервных путей, но свойством ЦНС яв-ся связность. Поэтому мы находим здесь третий тип нейронов — вставочные нейроны. Они соединяют эффекторные и рецепторные нейроны и за счет разветвления своих окончаний могут образовывать синапсы на каждом из своих концов с сотнями др. нейронов. Функциональной единицей НС яв-ся рефлекторная дуга, к-рая связывает нейроны — рецепторы и эффекторы — т. о., что раздражитель рецептора, способный вызвать в нем нервный разряд, автоматически инициирует разряд в нейроне-эффекторе, к-рый вызывает определенную реакцию к.-л. мышцы или железы. Нек-рые рефлексы крайне просты, большинство же имеют довольно сложное строение. ЦНС организована иерархическим образом: высшие центры стимулируются низшими и воздействуют на последние, так что постепенно усложняющиеся рефлексы занимают в ЦНС все более высокое положение. В спинном мозге находятся рефлекторные центры мускулатуры туловища, конечностей и шеи. Рефлекторный центр дыхания локализован в основном в стволовой части головного мозга, прилегающей к спинному мозгу. Гомеостатические реакции зависят от рефлексов еще более высокого уровня, центры к-рых находятся в гипоталамусе, к-рый может вызывать определенные мотивационные состояния, такие как чувство голода и жажды. Предполагают, что посредством постепенно усложняющихся рефлексов (нек-рые из них яв-ся врожденными, но большинство приобретается путем научения) осуществляются все функции ЦНС, включая высшие психич. функции, локализованные в структурах головного мозга. Принцип симметрии — еще один принцип организации ЦНС. Структуры, имеющие среднюю линию, такие как спинной мозг, состоят из двух симметричных половин. Др. структуры удвоены, подобно двум полушариям головного мозга. Большинство волокон в них пересекают среднюю линию (напр., левое полушарие управляет правой рукой).

Головной мозг — это орган, отличающийся исключительной сложностью своих составных частей и функций, — реальность, часто ускользающая от внимания при его кратком описании. Тем не менее многое уже известно об организации его проводящих (восходящих и нисходящих) путей. Значительную часть ЦНС составляет белое вещество, представляющее собой заключенные в оболочку отростки или продолжения нервных клеток, короче говоря — нервные волокна, пучки к-рых служат признаком проводящих путей (трактов). Тела нервных клеток не покрыты оболочкой и предстают в виде серого вещества, скопления к-рого указывают на центры активности, называемые ядрами.

С макроанатомической т. зр., головной мозг можно условно разделить на три части: а) мозговой ствол, части к-рого (продолговатый мозг, мост, средний мозг) содержат ядра ретикулярной формации ствола мозга, имеющей жизненно важное значение для функционирования сознания и обеспечения уровня возбуждения верхних отделов головного мозга; б) мозжечок, или малый мозг, — центр тонкой регуляции и координации двигательной активности; в) большой мозг, или собственно головной мозг, представляющий для психологии наибольший интерес в силу его организующей роли в осуществлении высших психич. функций и проявлении эмоций. Между стволом мозга и большим мозгом находятся таламус и гипоталамус. Таламические ядра преимущественно выполняют функции интеграции и передачи сенсорных импульсов высшим структурам большого мозга. Ядра гипоталамуса, напротив, играют важную роль в регулировании гомеостатических реакций и в интегрировании рефлексов ядер лимбической системы, расположенных в глубоких структурах большого мозга и отвечающих за переживание и выражение эмоций.

Глубоко испещренная извилистыми бороздами серая наружная поверхность головного мозга — кора больших полушарий — яв-ся конечной станцией сенсорных путей и местом начала двигательных трактов. Значительная часть этой области отведена ассоциативным зонам вставочных нейронов, сложные взаимосвязи между к-рыми дают начало памяти, речи, целенаправленному поведению и, в целом, высшим психич. функциям.

Карты проводящих путей, передаточных («релейных») станций, сенсорных и моторных зон головного мозга были составлены преимущественно с помощью физ. и физиолог. методов. Но природа высших психич. процессов чел. остается неуловимой, поскольку их невозможно нанести на карту подобным образом. Как заметил Дж. Минклер, структура и функции нервной ткани столь переплетены, что должны изучаться вместе. На нек-рых уровнях ЦНС соответствующие им функциональные элементы яв-ся физиолог. Др. уровни лучше всего изучать через обособленные поведенческие акты. Однако еще более сложные функции головного мозга требуют тщательного исслед. сложных структур или стилей поведения, а изучение наивысших уровней функционирования головного мозга перерастает в поиск ответов на вопросы, касающиеся интеллекта, логики, воли и сознания, к-рые сами столь же трудно постижимы, как и головной мозг.

Т. о., исслед. ЦНС у людей — это изучение деятельности головного мозга и отношений между мозгом и психикой (душой), область, к-рой интенсивно занимается психология. Связь между головным мозгом и психикой надежно установлена и была подмечена еще в далеком прошлом. Ч. Дж. Голден указывает, что Пифагор, за 500 лет до н. э., связывал головной мозг и мышление человека. А во II в. н. э. Гален из Пергама наблюдал, как повреждение мозга у гладиаторов отражается на сознании, и описал, как животные полностью теряли чувствительность при сдавливании их головного мозга.

Гален ошибался, приписывая психич. функции заполненным жидкостью полостям (желудочкам) головного мозга, — взгляд, к-рый тем не менее продержался до эпохи Возрождения. Совр. концепции функционирования головного мозга начали возникать не раньше XIX в. Столь поздний срок их появления — следствие виталистских и ошибочных взглядов как на мозг, так и на психику, к-рые сохранялись до тех пор, пока не стал формироваться более научный и редукционистский подход к деятельности мозга и поведению. В конце XIX в. Сантьяго Рамон-и-Кахаль выдвинул нейронную теорию, за которую он получил Нобелевскую премию в области физиологии в 1906 г., в том самом году, когда Ч. С. Шеррингтон, разработавший концепцию рефлекторной дуги, опубликовал сообщение об интегративных механизмах НС. Труды Галена по поведенческой оценке индивидуальных различий внесли большой вклад в зарождающуюся науку об измерении психич. явлений — психометрию (психометрику). Дж. Б. Уотсон переориентировал психологию на изучение поведения вместо ментальных состояний; он и Б. Ф. Скиннер внесли вклад в теорет. и прикладную науку о поведении, к-рая тесно переплелась с биологией в том, что касается проведения исслед. головного мозга и поведения.

НС, такая простая, если рассматривать по отдельности ее осн. элементы, имеет очень сложное устройство. Как заметил Дж. И. Хаббард, легко представить себе нейронные структуры, способные заставлять мышцы сокращаться, а железы выделять секрет, но трудно вообразить подобные структуры, позволявшие стареющему Бетховену сочинять произведения, к-рые он не мог более слышать. Абсолютная сложность взаимосвязей, к-рая могла бы позволить реализацию столь сложных поведенческих актов, поистине бросает вызов челов. разуму. К примеру, под одним квадратным сантиметром поверхности мозга могут помещаться около 5 млн нейронов, каждый из к-рых имеет синаптические контакты примерно с 600 другими нейронами. Фактически в любом конкретном поведенческом акте может участвовать буквально вся толща и поверхность головного мозга: «хотя можно локализовать основные, элементарные навыки, все наблюдаемое поведение являет собой сложное взаимодействие множества таких элементарных форм, так что головной мозг как единое целое принимает участие в большинстве поведенческих актов».

Чтобы понять, как работает мозг (и, возможно, вся ЦНС), необходимо осмыслить его как единое целое. Однако в силу ограничений теории, накопленных знаний и, быть может, пределов наших способностей мы должны приближаться к пониманию целого через изучение его составных частей, рассматривая их на разных уровнях и с разных т. зр. Т. о., полное понимание устройства и работы ЦНС лежит за рамками какой-то одной дисциплины. Психологи предложили и развили ряд моделей сознания (mind), совместимых с известными фактами о функционировании мозга. Пользуясь открытиями в области нейронауки, они разрабатывают модели поведения чел. и, как правило, вносят вклад в понимание связей между мозгом и поведением путем исслед. в области эксперим. и клинической нейропсихологии.

Нейропсихологи-экспериментаторы давно уже изучают такие проблемы, как расстройства поведения, вызванные контролируемыми разрушениями и др. повреждениями ткани ЦНС у животных. Нейропсихологи-клиницисты все чаще принимают во внимание качественные и количественные аспекты поведения при выполнении специальных заданий, чтобы определить (дедуктивно или индуктивно) вероятное место и характер поражений мозговой ткани у людей. Точность таких оценок достигла весьма высокого уровня, и поведенческое картирование различных форм прочности и недостаточности находит все большее применение в лечении и реабилитационных мероприятиях.

См. также Гипоталамус, Головной мозг, Лимбическая система, Ретикулярная активизирующая система, Черепные нервы

Р. Энфилд

 

Центральная предельная теорема (central limit theorem)

 

Ц. п. т. касается распределения линейной композиции (или, проще, суммы) случайных величин. Y яв-ся линейной композицией множества переменных (X1, Х2, Х3и т. д.), если Y = a1Х1 + а2Х2 + а3Х3 + ..., где ai — соответствующие веса переменных. Напр., если Y = 3Х1 + 4Х2,то а1 = 3, а а2 = 4. Согласно Ц. п. т., форма распределения Y начинает приобретать все большее сходство с нормальным распределением по мере увеличения числа входящих в такую линейную композицию переменных. В более точной формулировке Ц. п. т. гласит, что составная случайная величина Y имеет асимптотически нормальное распределение, когда число образующих ее переменных стремится к бесконечности. Ц. п. т. яв-ся одним из главных оснований регулярного использования психологами и статистиками нормального распределения. Отметим, что эта теорема не требует нормального распределения случайных величин, являющихся линейными составными элементами сложной случайной величины Y. Y асимптотически нормально распределена, даже если образующие ее переменные имеют распределения, принципиально отличающиеся от нормального. Возможно, это проще всего пояснить на примере линейной композиции исходов бросания монеты. Допустим, что подбрасывается правильная (симметричная) монета и случайное выпадение «орла» отмечается нулем (0), а случайное выпадение «решки» — единицей (1). Этот эксперимент имеет два возможных исхода, и оба они равновероятны. Если мы обозначим исход эксперимента через X,то можно принять, что Р (X = 0) = 0,5 и Р (X = 1) = 0,5. Распределение случайной величины X изображено на рис. 1.