Виды окислительно-восстановительных реакций

Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н2S + Cl2 → S + 2HCl

Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H2O → 2H2 + O2

Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых атомы с промежуточной степенью окисления превращаются в эквимолярную смесь атомов с более высокой и более низкой степенями окисления, например:

Cl2 + H2O → HClO + HCl

Репропорционирование (компропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH4NO3 → N2O + 2H2O

Окисли́тель — вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель — это акцептор электронов.

В зависимости от поставленной задачи (окисление в жидкой или в газообразной фазе, окисление на поверхности) в качестве окислителя могут быть использованы самые разные вещества.

Серебро и золото. Положение в периодической системе Д. И. Менделеева, особенности строения атомов и простых веществ, физические и химические свойства, получение и применение. Значение соединений серебра в медицине.

Серебро (лат. Argentum), Ag, химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси двух стабильных изотопов 107Ag и 109Ag; из радиоактивных изотопов практически важен 110Ag (T1/2 = 253 cym). С. было известно в глубокой древности (4-е тыс. до н. э.) в Египте, Персии, Китае.

Распространение в природе. Среднее содержание С. в земной коре (кларк) 7·10-6% по массе. Встречается преимущественно в средне- и низкотемпературных гидротермальных месторождениях, в зоне обогащения сульфидных месторождений, изредка — в осадочных породах (среди песчаников, содержащих углистое вещество) и россыпях (см. Серебряные руды, Серебро самородное). Известно свыше 50 минералов С. В биосфере С. в основном рассеивается, в морской воде его содержание 3·10-8%. С. — один из наиболее дефицитных элементов.

Физические и химические свойства. С. имеет гранецентрированную кубическую решётку (а = 4,0772 Å при 20 "С). Атомный радиус 1,44 Å, ионный радиус Ag+ 1,13 Å. Плотность при 20 °С 10,5 г/см3, tпл 960,8°С; tkип 2212°С; теплота плавления 105 кдж/кг (25,1 кал/г). С. обладает наивысшими среди металлов удельной электропроводностью 6297 сим/м (62,97 ом-1(см-1) при 25 °С, теплопроводностью 407,79 вт/(м·К) [0,974 кал/(см·°С·сек)] при 18 °С и отражательной способностью 90—99% (при длинах волн 100000—5000 Å). Удельная теплоёмкость 234,46 дж/(кг·К) [0,056 кал/(г ·°С)], удельное электросопротивление 15,9 ном (м (1,59 мком (см) при 20°С. С. диамагнитно с атомной магнитной восприимчивостью при комнатной температуре — 21,56·10-6, модуль упругости 76480 Мн/м2 (7648 кгс/мм2), предел прочности 100 Мн/м2 (10 кгс/мм2), твёрдость по Бринеллю 250 Мн/м2 (25 кгс/мм2). Конфигурация внешних электронов атома Ag 4d105s4.

С. проявляет химические свойства, характерные для элементов 16 подгруппы периодической системы Менделеева. В соединениях обычно одновалентно.

С. находится в конце электрохимического ряда напряжений, его нормальный электродный потенциал Ag Û Ag+ + е- равен 0,7978 в.

При обычной температуре Ag не взаимодействует с O2, N2 и H2. При действии свободных галогенов и серы на поверхности С. образуется защитная плёнка малорастворимых галогенидов и сульфида Ag2S (кристаллы серо-чёрного цвета). Под влиянием сероводорода H2S, находящегося в атмосфере, на поверхности серебряных изделий образуется Ag2S в виде тонкой плёнки, чем объясняется потемнение этих изделий. Сульфид можно получить действием сероводорода на растворимые соли С. или на водные суспензии его солей. Растворимость Ag2S в воде 2,48·10-5моль/л (25 °С). Известны аналогичные соединения — селенид Ag2Se и теллурид Ag2Te.

Из окислов С. устойчивыми являются закись Ag2O и окись AgO. Закись образуется на поверхности С. в виде тонкой плёнки в результате адсорбции кислорода, которая увеличивается с повышением температуры и давления.

Ag2O получают действием КОН на раствор AgNO3. Растворимость Ag2O в воде — 0,0174 г/л. Суспензия Ag2O обладает антисептическими свойствами. При 200 °С закись С. разлагается. Водород, окись углерода, многие металлы восстанавливают Ag2O до металлического Ag. Озон окисляет Ag2O с образованием AgO. При 100 °С AgO разлагается на элементы со взрывом. С. растворяется в азотной кислоте при комнатной температуре с образованием AgNO3. Горячая концентрированная серная кислота растворяет С. с образованием сульфата Ag2SO4 (растворимость сульфата в воде 0,79% по массе при 20 °С). В царской водке С. не растворяется из-за образования защитной плёнки AgCI. В отсутствие окислителей при обычной температуре HCI, HBr, HI не взаимодействуют с С. благодаря образованию на поверхности металла защитной плёнки малорастворимых галогенидов. Большинство солей С., кроме AgNO3, AgF, AgCIO4 обладают малой растворимостью. С. образует комплексные соединения, большей частью растворимые в воде. Многие из них имеют практическое значение в химической технологии и аналитической химии, например комплексные ионы [Ag (CN)2]-, [Ag (NH3)2]+, [Ag (SCN)2]-.

Получение. Большая часть С. (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении С. из серебряных и золотых руд применяют метод цианирования — растворения С. в щелочном растворе цианида натрия при доступе воздуха:

2 Ag + 4 Na CN + 1/2О2 + H2O = 2 Na [Ag (CN)2] + 2NaOH.

Из полученных растворов комплексных цианидов С. выделяют восстановлением цинком или алюминием:

2 [Ag (CN)2]- + Zn = [Zn (CN)4]2- +2 Ag.

Из медных руд С. выплавляют вместе с черновой медью и затем выделяют его из анодного шлама, образующегося при электролитической очистке меди. При переработке свинцово-цинковых руд С. концентрируется в сплавах свинца — черновом свинце, из которого его извлекают добавлением металлического цинка, образующего с С. нерастворимое в свинце тугоплавкое соединение Ag2Zn3, всплывающее на поверхность свинца в виде легко снимающейся пены. Далее для отделения С. от цинка последний отгоняют при 1250 °С. Извлечённое из медных или свинцово-цинковых руд С. сплавляют (сплав Доре) и подвергают электролитической очистке.

Применение. С. используют преимущественно в виде сплавов: из них чеканят монеты, изготовляют бытовые изделия, лабораторную и столовую посуду. С. покрывают радиодетали для придания им лучшей электропроводности и коррозионной стойкости; в электротехнической промышленности применяются серебряные контакты (см. Контакт электрический). Для пайки титана и его сплавов используются серебряные припои; в вакуумной технике С. служит конструкционным материалом Металлическое С. идёт на изготовление электродов для серебряно-цинковых и серебряно-кадмиевых аккумуляторов. Оно служит катализатором в неорганическом и органическом синтезе (например, в процессах окисления спиртов в альдегиды и кислоты, а также этилена в окись этилена). В пищевой промышленности применяются серебряные аппараты, в которых приготовляют фруктовые соки (см. также Серебрение). Ионы С. в малых концентрациях стерилизуют воду. Огромные количества соединений С. (AgBr, AgCI, Agl) применяются для производства кино- и фотоматериалов (см. Серебра галогениды, Серебра нитрат).

Препараты С. обладают антибактериальным, вяжущим и прижигающим действием, что связано с их способностью нарушать ферментные системы микроорганизмов и осаждать белки. В медицинской практике наиболее часто применяют серебра нитрат, колларгол, протаргол (в тех же случаях, что и колларгол); бактерицидную бумагу (пористая бумага, пропитанная нитратом и хлоридом С.) применяют при небольших ранах, ссадинах, ожогах и т. п.

Экономическое значение. С. в условиях товарного производства выполняло функцию всеобщего эквивалента наряду с золотом и приобрело, как и последнее, особую потребительную стоимость — стало деньгами. "Золото и серебро по своей природе не деньги, но деньги по своей природе — золото и серебро" (Маркс К., в кн.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 13, с. 137). Товарный мир выделил С. в качестве денег потому, что оно обладает важными для денежных товаров свойствами: однородностью, делимостью, сохраняемостью, портативностью (высокой стоимостью при небольших объёме и массе), легко поддаётся обработке.

Зо́лото — элемент побочной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum[2]). Простое вещество золото (CAS-номер: 7440 Чистое золото — мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает исключительно высокой теплопроводностью и низким электрическим сопротивлением.

Золото — очень тяжёлый металл: плотность чистого золота равна 19 621 кг/м³ (шар из чистого золота диаметром 46 мм имеет массу 1 кг). Среди металлов по плотности занимает шестое место: после осмия, иридия, рения, платины и плутония. Высокая плотность золота облегчает его добычу. Самые простые технологические процессы, такие, как, например, промывка на шлюзах, могут обеспечить весьма высокую степень извлечения золота из промываемой породы.

Золото — очень мягкий металл: твёрдость по шкале Мооса ~2.5 (сравнима с твёрдостью ногтя), по Бринеллю 220—250 МПа.

Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 500 м/г.