Структура экспертных систем

Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.):

· решателя (интерпретатора);

· рабочей памяти (РП), называемой также базой данных (БД);

· базы знаний (БЗ);

· компонентов приобретения знаний;

· объяснительного компонента;

· диалогового компонента.

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

 

4.Технология разработки ЭС: этапы и стадии проектирования.

Технология разработки ЭС включает следующие шесть этапов:

· этап идентификации,

Этап идентификации связан, прежде всего, с осмыслением тех задач, которые предстоит решить будущей ЭС, и формированием требований к ней. Результатом данного этапа является ответ на вопрос, что надо сделать и какие ресурсы необходимо задействовать (идентификация задачи, определение участников процесса проектирования и их роли, выявление ресурсов и целей).

· этап концептуализации,

На данном этапе проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач. Этот этап завершается созданием модели предметной области (ПО), включающей основные концепты и отношения. На этапе концептуализации определяются следующие особенности задачи:

· типы доступных данных;

· исходные и выводимые данные, подзадачи общей задачи;

· применяемые стратегии и гипотезы;

· виды взаимосвязей между объектами ПО, типы используемых отношений (иерархия, причина — следствие, часть — целое и т.п.);

· процессы, применяемые в ходе решения;

· состав знаний, используемых при решении задачи;

· типы ограничений, накладываемых на процессы, которые применены в ходе решения;

· состав знаний, используемых для обоснования решений.

· этап формализации,

На данном этапе определяются состав средств и способы представления декларативных и процедурных знаний, осуществляется это представление и в итоге формируется описание решения задачи ЭС на предложенном (инженером по знаниям) формальном языке.

· этап выполнения,

Цель этого этапа — создание одного или нескольких прототипов ЭС, решающих требуемые задачи.

· этап тестирования,

В ходе данного этапа производится оценка выбранного способа представления знаний в ЭС в целом. Для этого инженер по знаниям подбирает примеры, обеспечивающие проверку всех возможностей разработанной ЭС.

· этап опытной эксплуатации.

На этом этапе проверяется пригодность ЭС для конечного пользователя. Пригодность ЭС для пользователя определяется в основном удобством работы с ней и ее полезностью.

 

5.Нечеткая логика: нечеткое множество, функция принадлежности, операции над нечеткими множествами. Нечеткие отношения. Операции над нечеткими отношениями.

Нечеткая логика — это метод формирования рассуждений с помощью логических выражений, описывающих принадлежность элементов к нечетким множествам.

Пусть E - универсальное множество, x - элемент E, а R - определенное свойство.

Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {mA (х)/х}, где mA(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пары A = {mA(х)/х}, где mA(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).

Функция принадлежностиуказывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.

http://tinyurl.com/ayf4xba http://tinyurl.com/b9owhyl