Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому — мужской.

 

Характеристика половых хромосом

первые годы XX в. некоторые гистологи, изучая число хромосом у разных видов животных, обнаружили, что у некоторых видов имеется два типа сперматозоидов с разным числом хромосом. В 1902 г. американский биолог К.Мак-Кланг впервые высказал гипотезу, что пол организма может определяться его хромосомным набором. Эта гипотеза была развита и проверена американским цитологом Вильсоном . В работах 1905-1906 гг. он показал, что у самцов и самок может быть разное число хромосом или что они имеют пару хромосом разной формы. Этот вопрос был детально изучен на плодовой мушке дрозофиле , излюбленном объекте исследований генетиков. В 1910 г. американские генетики Т.Г.Морган и его сотрудники А.Стертевант , К.Бриджес и Г.Меллерустановили роль хромосом в определении пола у этой мушки. Оказалось, что у дрозофил три пары хромосом не имеют отношения к определению пола. Такие хромосомы называют соматическими хромосомами, или аутосомами . А четвертая пара хромосом тесно связана с определением пола и их называют половыми хромосомами .

Половые хромосомы оказались двух типов: длинные палочковидные, которые назвали Х-хромосомами, и изогнутые, которые назвали Y-хромосомами. Их сочетание и определяло пол мухи. Если в зиготу попадало две X-хромосомы, то такая зигота давала самку. Если же в зиготу попадали Х-хромосома и Y-хромосома, то развивался самец ( рис. 108 ). Яйцеклетки всегда имели X-хромосому, а сперматозоиды были двух типов: с Х-хромосомой и с Y-хромосомой. Если сперматозоиды обоих типов одинаково эффективны (сливаются с яйцеклетками одинаково часто и при этом возникают одинаково жизнеспособные зиготы), то число самцов и самок в потомстве получается одинаковым.

До работ по генетике пола не было ни одного доказательства, что какой-то признак организма связан с определенной хромосомой. В ходе этих работ было выяснено, что такой важный признак, как пол, обуславливается половыми хромосомами. Этот результат сам по себе был важным доказательством роли хромосом в наследственности. Но Морган и его сотрудники, кроме того установили, что один из генов, определяющих окраску глаз дрозофил, лежит в половой Х-хромосоме. (Про признаки, гены которых лежат в половых хромосомах, говорят, что они сцеплены с полом . Изучение наследования гена окраски глаз дало еще одно доказательство тому, что гены расположены в хромосомах.

У дрозофил самки образуют одинаковые гаметы , в каждой из которых имеется половая Х-хромосома. Говорят, что у дрозофил женский пол является гомогаметным. Напротив, самцы образуют разные гаметы: в одних содержится Х-хромосома, а в других - Y-хромосома. Такой пол называется гетерогаметным. Если нарисовать решетку Пеннета , то и она показывает, что самцов и самок в потомстве должно быть равное число.

 

 

Хромосомная теория

Сущность хромосомной теории определения пола. Очень давно люди заметили, что соотношение полов у раздельнополых организмов близко к 1 : 1, т. е. самцы и самки встречаются одинаково часто. Ниже указан процент мужских особей у разных организмов.

Еще Мендель обратил внимание, что такое же расщепление 1 : 1 характерно для анализирующего скрещивания: АаХаа. Было высказано предположение, что один из полов должен быть гомозиготным, а другой — гетерозиготным. Первое экспериментальное доказательство в пользу этой гипотезы было получено К. Корренсом. Среди рода Bryonia (переступень) есть двудомные (В. dioica) и однодомные (В. alba) виды. Для того чтобы определить, как наследуют пол мужские и женские растения двудомного вида, было произведено скрещивание их с однодомным. Оказалось, что в потомстве женских растений были только женские, а в потомстве мужских — половина женских и половина мужских растений. Отсюда был сделан вывод, что женские растения Bryonia гомозиготны, а мужские — гетерозиготны.
Пол, образующий одинаковые в отношении определения пола гаметы, назвали гомогаметным, а пол, образующий разные гаметы, — гетерогаметным.
Решающее доказательство в пользу такого заключения, как было уже сказано (см. гл. 8), получили цитологи. Еще в конце прошлого века у клопа Lygaeus при изучении сперматогенеза были описаны гаплоидные сперматоциты II двух сортов: сХ-хромосомой и У-хромосомой, в отличие от самок, которые в яйцеклетках, кроме 6 аутосом, одинаковых с самцами, обязательно имели Х-хромосому (рис. 120). У другого клопа Protenor гетерогаметным полом также оказался мужской. Но у этого вида половина сперматоцитов, кроме 6 аутосом, имела Х-хромосому, а половина ее не имела (рис. 120).
Было высказано предположение, что Хи У-хромосомы имеют отношение к определению пола, их назвали половыми хромосомами. Экспериментальные доказательства этого были получены Т. Морганом и его сотрудниками при изучении наследования признаков, сцепленных с полом (см. гл. 8). Так была впервые сформулирована хромосомная теория определения пола.
Половые хромосомы и их роль в определении пола. Это открытие стимулировало дальнейшие цитологические исследования. Половые хромосомы были найдены у многих организмов. Среди растений впервые половые хромосомы были описаны у печеночного мха Sphaerocarpus. Известны они у высших растений: меландриума, щавеля, элодеи, хмеля и других. У животных они описаны для многих насекомых, птиц, млекопитающих. Описаны они и у человека.
Изучение половых хромосом показало, что они отличаются от аутосом не только генетически (см. гл. 8), но и цитологически. Половые хромосомы богаты гетерохроматином (см. гл. 2). Редупликация их происходит асинхронно с аутосомами, а у гомогаметного пола одна из Х-хромосом репродуцируется позже

остальных. В мейозе они часто сильно спирализованы (гетеропикноз). ПолоКариотипы С£ШЦ0В и самок вые хромосомы у гетерогаметного и хромосомные наборы гапола (гетерОМОрфные пары) не КОНЪмет гетерогаметного пола, югируют или конъюгируют лишь частично, что указывает на гомологичность лишь отдельных участков. Как уже говорилось (см. гл. 8), при расхождении Хи Ухромосом в редукционном делении образуются 2 разные клетки: одна с Х-хромосомой, другая — с У-хромосомой, следовательно, соотношение гамет с Хи У-хромосомой, образуемых гетерогаметный полом, бывает точно 1:1. Точно так же два сорта гамет образуются, если клетка содержит одну А-хромосому, при этом 50% гамет имеет Х-хромосому, а 50% не имеет ее. Гаметы, образуемые гомогаметным полом, все одинаковые и содержат Х-хромосому (название гомогаметный и указывает на это). В результате оплодотворения возникает равное количество самцов и самок. Иными словами, хромосомный механизм определения пола является идеальным саморегулирующимся механизмом. Анализ половых хромосом у различных организмов показал, что существуют разные типы хромосомного определения пола (табл. 14). Они получили название тип ХО и тип ХУ. Гетерогаметный полом может быть как мужской, так и женский. Сейчас описаны и более сложные комплексы половых хромосом, но они принципиально не отличаются от только что названных.
Гинандроморфизм. Иногда встречаются такие явления, которые как будто специально созданы природой для проверки правильности теории. В отношении хромосомной теории примером может служить явление гинандроморфизма. Организмы, совмещающие в себе части тела разных полов — мужского и женского, называют гинандроморфами (гин— 9, андр— d ). Гинандроморфы существуют у тех видов, у которых четко выражен половой диморфизм (насекомые, птицы, человек), но встречаются они редко.
При латеральном гинандроморфизме, например у дрозофилы, одна половина тела имеет признаки женского пола, а другая — мужского (см. рис. на стр. 288). Как может возникнуть такой организм? Цитологические исследования показывают, что ткани гинандроморфа химерны: женская половина несет две Х-хромосомы, а мужская ■— одну.
На приведенном рисунке показан случай, когда у гинандроморфа рецессивный, сцепленный с полом ген white проявился на мужской стороне тела и не проявился на женской. Почему это так?
У гинандроморфа, возникшего из зиготы w+w, при первом делении дробления в силу каких-то необычных условий одна из Х-хромосом, несущая ген w+, в одной из дочерних клеток (бластомеров) утрачивается. Тогда две дочерние клетки окажутся неодинаковыми в отношении Z-хромосом: одна~~г, а вторая w.
Половина тела мухи, развившаяся из первой клетки, окажется женской и с красным глазом, а из второй разовьется половина тела с признаками мужского пола и с белым глазом, поскольку рецессивный ген w, содержащийся в единственной X-хромосоме, будет в гемизиготном состоянии.
Таким образом, и цитологический, и генетический анализ показывает, что в данном случае причиной гинандроморфизма может быть элиминация одной из Х-хромосом.
Кроме этого типа гинандроморфизма, который можно назвать монозиготным, известен также дизиготический гинандроморфизм. Он обнаружен у бабочек — Abraxas, тутового шелкопряда и у дрозофилы. Например, иногда в яйцеклетке тутового шелкопряда (самка гетерогаметна) образуются два женских пронуклеуса, один Из которых кроме аутосом (обозначим их А) содержит Х-хромосому (Х+А), а другой — У+А. При полиспермии оба пронуклеуса будут оплодотворены разными спермиями, тогда в одном из бластомеров будет ХХ + АА, а в другом — ХУ+АА. Это и приведет к развитию дизиготного гинандроморфа. Аналогично может возникать гинандроморф у дрозофилы, только здесь различия между бластомерами получаются за счет разных сперматозоидов (самцы гетерогаметны).
Исключения из хромосомной теории определения пола. По
мере накопления фактов хромосомная теория определения пола не только находила подтверждение, но и встречала некоторые трудности. Оставался открытым вопрос о том, не являются ли половые хромосомы индикаторами пола, вторично-половыми признаками?
Анализ исключительных особей у дрозофил, которые были получены в опытах Бриджеса, как результат нерасхождения половых хромосом (см. гл. 8) показал, что особи, имеющие, кроме аутосом, ХХУ-хромосомы (ХХУ+АА), являются самками, а особи ХО+АА — самцами. Эти факты убедительно говорили о том, что половые хромосомы отнюдь не индикаторы пола. Но как же они определяют пол, если особи ХУ+АА и ХО+АА являются самцами, а ХХ+АА и ХХУ+АА самками? Очевидно, дело обстоит не так просто, как это казалось вначале.

Балансовая теория

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом . По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Другие соотношения видны из табл. 128 : Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

Таким образом, фактически было показано, что развитие пола у дрозофил зависит от того, в каком соотношении вырабатываются белки, кодируемые аутосомами и Х-хромосомами. На аутосомах и Х-хромосоме найдены гены, кодирующие эти белки-определители пола. Как известно, пол и у человека, и у дрозофил, определяется половыми хромосомами (женщина имеет генотип XX, мужчина - XY). Однако сравнение людей и дрозофил с необычным числом половых хромосом показало, что в действительности механизм определения пола у них различен ( табл. 129 ).

У человека главным фактором, влияющим на определение пола, является наличие У-хромосомы. Если она есть, организм имеет мужской пол. Даже если в геноме имеются три или четыре Х-хромосомы, но кроме того хотя бы одна Y-хромосома, то из такой зиготы развивается мужчина. Почему же Y-хромосома играет столь разную роль у дрозофил и у человека? Дело в том, что у дрозофил в Y-хромосоме очень мало генов, и это гены, которые отвечают за развитие сперматозоидов у взрослого самца. Напротив, у человека в коротком плече Y-хромосомы лежит ген S , который играет важнейую роль в определении пола. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот ген играет определяющую роль и у других млекопитающих. Когда с помощью генной нженерии ген S ввели в клетку мыши с женским генотипом XX, то из такой клетки развился мышонок не только с внешними признаками самца, но и с соответствующим поведением.