Парогазовая установка

— электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД

Принцип действия и устройство

Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Существуют парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае устанавливается только один генератор.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

[править]Преимущества ПГУ

§ Парогазовые установки позволяют достичь электрического КПД более 60 %. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45 %, для газотурбинных установок — в диапазоне 28-42 %

§ Низкая стоимость единицы установленной мощности

§ Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками

§ Короткие сроки возведения (9-12 мес.)

§ Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом

§ Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. энергии

§ Более экологически чистые в сравнении с паротурбинными установками

[править]Недостатки ПГУ

§ Низкая единичная мощность оборудования (160—972,1[источник не указан 45 дней] МВт на 1 блок), в то время как современные ТЭС имеют мощность блока до 1200 МВт, а АЭС 1200—1600 МВт.

§ Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.

 

Когенерация — (название образовано от слов КОмбинированная ГЕНЕРАЦИЯ электроэнергии и тепла) процесс совместной выработки электрической и тепловой энергии. В советскойтехнической литературе распространён термин теплофикация — централизованное теплоснабжение на базе комбинированного производства электроэнергии и тепла на теплоэлектроцентралях. Когенерация широко используется в энергетике, например на ТЭЦ (теплоэлектроцентралях), где рабочее тело после использования в выработке электроэнергии, применяется для нужд теплоснабжения. Тем самым значительно повышается КПД — до 90 % и даже выше.

Смысл когенерации в том, что при прямой выработке электрической энергией, создаётся возможность утилизировать попутное тепло.

Когенерационные установки (когенераторы) широко используются в малой энергетике (мини-ТЭЦ). И для этого есть следующие причины:

§ Тепло используется непосредственно в месте получения, а это обходится гораздо дешевле, чем строительство и эксплуатация многокилометровых теплотрасс;

§ Электричество используется большей частью в месте получения, в результате, без накладных расходов поставщиков энергии, его стоимость для потребителя может быть до 5 раз меньше, чем у энергии из сети[источник не указан 345 дней].

§ Потребитель приобретает энергетическую независимость от сбоев в электроснабжении и аварий в системах теплоснабжения.

§ Использование когенерации наиболее выгодно для потребителей с постоянным потреблением электроэнергии и тепла. Для потребителей, у которых имеются ярко выраженные «пиковые нагрузки» (например, жилое хозяйство, ЖКХ) когенерация мало выгодна — из-за большой разницы между установленной и среднесуточной мощности окупаемость проекта значительно затягивается.

Тригенерация — это организация сразу трех энергий: электричества, тепла и холода. Получение первых двух есть когенерация (то есть первые две составляющие). Тригенерация является более выгодной по сравнению с когенерацией, поскольку даёт возможность эффективно использовать утилизированное тепло не только зимой для отопления, но и летом длякондиционирования помещений или для технологических нужд. Для этого используются абсорбционные бромистолитиевые холодильные установки. Такой подход позволяет использовать генерирующую установку круглый год, тем самым не снижая высокий КПД энергетической установки в летний период, когда потребность в вырабатываемом тепле снижается. В конце 2007 года к георганизации энергии японские инженеры подключили четвертую составляющую - солнечные батареи и провели опыты в на одном из высотных зданий мегаполиса.[1]