Уровни и средства комплексирования

В создаваемых ВС стараются обеспечить несколько путей пере­дачи данных, что позволяет достичь необходимой надежности функционирования, гибкости и адаптируемости к конкретным ус­ловиям работы. Эффективность обмена информацией определяется скоростью передачи и возможными объемами данных, передавае­мыми по каналу взаимодействия. Эти характеристики зависят от средств, обеспечивающих взаимодействие модулей, и уровня управ­ления процессами, на котором это взаимодействие осуществляется. Сочетание различных уровней и методов обмена данными между модулями ВС наиболее полно представлено в универсальных супер­ЭВМ и больших ЭВМ, в которых сбалансировано использовались основные методы достижения высокой производительности. Для лучшего понимания вопросов комплексирования приведем структуры ЭС ЭВМ(аналог IBM 370).

В этих машинах можно предусмотреть следующие уровни комплексирования :(Рис. 22.1. отображает только три уровня.)

-прямого управления (процессор — процессор);

- общей оперативной памяти;

- комплексируемых каналов ввода-вывода(не показано);

- устройств управления внешними устройствами (УВУ)(не показано);

- общих внешних устройств.

На каждом из этих уровней используются специальные техни­ческие и программные средства, обеспечивающие обмен информа­цией.

Уровень прямого управления служит для передачи однобайтовых приказов-сообщений.

Уровень общей оперативной памяти (ООП) является наиболее предпочтительным для оперативного взаимодействия процессоров. В этом случае ООП эффективно работает при небольшом числе об­служиваемых абонентов.

Уровень комплексируемых каналов ввода-вывода предназначается для передачи больших объемов информации между блоками опера­тивной памяти, сопрягаемых в ВС.

Уровень устройств управления внешними устройствами (УВУ) предполагает использование встроенного в УВУ двухканального пе­реключателя и команд «зарезервировать» и «освободить». Двухканальный переключатель позволяет подключать УВУ одной машины к селекторным каналам различных ЭВМ. По команде «зарезервиро­вать» канал — инициатор обмена имеет доступ через УВУ к любым накопителям на дисках НМД или на магнитных лентах НМЛ.

На четвертом уровне с помощью аппаратуры передачи данных (АПД) (мультиплексоры, сетевые адаптеры, модемы и др.) имеется возможность сопряжения с каналами связи. Эта аппаратура позво­ляет создавать сети ЭВМ.

Пятый уровень предполагает использование общих внешних уст­ройств. Для подключения отдельных устройств используется авто­номный двухканальный переключатель.

Пять уровней комплексирования получили название логических потому, что они объединяют на каждом уровне разнотипную аппа­ратуру, имеющую сходные методы управления. Каждое из устройств может иметь логическое имя, используемое в прикладных програм­мах. Этим достигается независимость программ пользователей от конкретной физической конфигурации системы.

Второй логический уровень позволяет создавать многопроцес­сорные ВС. Обычно он дополняется и первым уровнем, что позво­ляет повышать оперативность взаимодействия процессоров. Вычис­лительные системы сверхвысокой производительности должны строиться как многопроцессорные. Центральным блоком такой системы является быстродействующий коммутатор, обеспечивающий необходимые подключения абонентов (процессоров и каналов) к общей оперативной памяти.

Уровни 1, 3, 4, 5 обеспечивают построение разнообразных ма­шинных комплексов. Особенно часто используется третий в комби­нации с четвертым. Целесообразно их дополнять и первым уровнем.

Пятый уровень комплексирования используется в редких спе­циальных случаях, когда в качестве внешнего объекта используется какое-то дорогое уникальное устройство. В противном случае этот уровень малоэффективен. Любое внешнее устройство — это недо­статочно надежное устройство точной механики, а значит, выгоднее использовать четвертый уровень комплексирования, когда можно сразу управлять не одним, а несколькими внешними устройствами, включая и резервные.

Основными характеристиками ВС являются производительность, время ответа, надежность и стоимость. В дополнение к ним используются следующие характеристики: габариты, масса, потребляемая мощность, диапазон рабочих температур, ремонтопригодность и др.

Характеристики зависят от организации системы – структуры, состав» программного обеспечения, режима функционирования системы и др.

Производительность – характеристика вычислительной мощности системы, определяющая количество вычислительной работы, выполняемой системой за единицу времени.

Время пребывания заданий, (задач) в системе, – длительность промежутка времени от момента поступления задания в систему до момента окончания его выполнения.

Надежность – свойство системы выполнять возложенные на нее функции в заданных условиях функционирования с заданными показателями качества.

Многопроцессорные вычислительные системы — это системы, содержащие несколь­ко процессоров, информационно взаимодействующих между собой либо на уров­не регистров процессорной памяти, либо на уровне оперативной памяти.

Последний тип взаимодействия принят в большинстве случаев, так как органи­зуется значительно проще и сводится к созданию общего поля оперативной па­мяти для всех процессоров. Общий доступ к внешней памяти и к устройствам ввода-вывода обеспечивается обычно через каналы ОП. Важным является и то, что многопроцессорная вычислительная система работает под управлением еди­ной операционной системы, общей для всех процессоров. Это существенно улуч­шает динамические характеристики ВС, но требует наличия специальной, весь­ма сложной операционной системы.

Схема взаимодействия процессоров в ВС показана на рис. 22.2.

Быстродействие и надежность многопроцессорных В С по сравнению с много­машинными, взаимодействующими на 3-м уровне, существенно повышаются, во-первых, ввиду ускоренного обмена информацией между процессорами, более быстрого реагирования на ситуации, возникающие в системе; во-вторых, вслед­ствие большей степени резервирования устройств системы (система сохраняет работоспособность, пока работоспособны хотя бы по одному модулю каждого типа устройств).

Типичным примером массовых многомашинных ВС могут служить компьютер­ные сети, примером многопроцессорных вычислительных систем (МП ВС) –суперкомпьютеры.

Многопроцессорная архитектура. Наличие в компьютере не­скольких процессоров означает, что параллельно может быть орга­низовано много потоков данных и много потоков команд. Таким об­разом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную па­мять и несколько процессоров, представлена на рис. 3.1. Преимуще­ство в быстродействии многопроцессорных и многомашинных вы­числительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что мно­жество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычисли­тельные операции выполняются одновременно на различных одно­типных наборах данных. Структура таких компьютеров представле­на на рис. 3.2.