Тайна Египетского календаря

Платоновы тела

Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа.

Что такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой – столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны (правильные пятиугольники).

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Венниджера «Модели многогранников». В русском переводе эта книга опубликована издательством «Мир» в 1974 г. Эпиграфом к книге выбрано высказывание Бертрана Рассела: «Математика владеет не только истиной, но и высокой красотой – красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Книга начинается с описания так называемых правильных многогранников, то есть многогранников, образованных простейшими правильными многоугольниками одного типа. Эти многогранники принято называть Платоновыми телами (Рис. 1), названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии.

 

(а)

(б) (в)

(г) (д)

 

Рисунок 1. Платоновы тела: (а) октаэдр («Огонь»), (б) гексаэдр или куб («Земля»),

(в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Мы начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники. Первый из них – это тетраэдр (Рис.1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр.

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г).

Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в).

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника – пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д).

Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим поверхность, то есть из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Существуют удивительные геометрические связи между всеми правильными многогранниками. Так, например, куб (Рис.1-б) и октаэдр (Рис.1-в) дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр (Рис.1-г) идодекаэдр (Рис.1-д). Тетраэдр (Рис.1-а) дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен — ведь правильных многоугольников на плоскости бесконечно много!

Числовые характеристики Платоновых тел

Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней, сходящихся в каждой вершине, m, число граней Г, число вершин В, число ребер Р и число плоских углов У на поверхности многогранника Эйлер открыл и доказал знаменитую формулу

В — Р + Г = 2,

связывающего числа вершин, ребер и граней любого выпуклого многогранника. Указанные выше числовые характеристики приведены в Табл. 1.

Таблица 1

Числовые характеристики Платоновых тел

 

Многогранник Число сторон грани, m Число граней, сходящихся в вершине, n Число граней Г Число вершин В Число ребер Р Число плоских углов на поверхности У
Тетраэдр
Гексаэдр (куб)
Октаэдр
Икосаэдр
Додекаэдр

Золотая пропорция в додекаэдре и икосаэдре

Додекаэдр и двойственный ему икосаэдр (Рис.1-г,д) занимают особое место среди Платоновых тел. Прежде всего необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотой пропорцией. Действительно, гранями додекаэдра (Рис.1-д) являются пентагоны, т.е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр (Рис.1-г), то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотая пропорция в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через Ri. Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через Rm. Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через Rc. В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра, имеющего ребро единичной длины, выражается через золотую пропорцию t (Табл.2).

Таблица 2

Золотая пропорция в сферах додекаэдра и икосаэдра

  Rc Rm Ri
Икосаэдр
Додекаэдр

Заметим, что отношение радиусов = одинаково, как для икосаэдра, так и для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Например, если взять икосаэдр и додекаэдр с длиной ребра, равной единице, и вычислить их внешнюю площадь и объем, то они выражаются через золотую пропорцию (Табл.3).

Таблица 3

Золотая пропорция во внешней площади и объеме додекаэдра и икосаэдра

  Икосаэдр Додекаэдр
Внешняя площадь
Объем

 

Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотая пропорция является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины», которую мы рассмотрим ниже.

Космология Платона

Рассмотренные выше правильные многогранники получили название Платоновых тел, так как они занимали важное место в философской концепции Платона об устройстве мироздания.

 

Платон (427-347 годы до н.э.)

Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал Огонь, так как его вершина устремлена вверх; ИкосаэдрВоду, так как он самый «обтекаемый» многогранник; КубЗемлю, как самый «устойчивый» многогранник; ОктаэдрВоздух, как самый «воздушный» многогранник. Пятый многогранник, Додекаэдр, воплощал в себе «все сущее», «Вселенский разум», символизировал все мироздание и считался главной геометрической фигурой мироздания.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь. Атомы «стихий» настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомним, что консонансом называется приятное созвучие. В связи с этими телами уместно будет сказать, что такая система элементов, включавшая четыре элемента — землю, воду, воздух и огонь, — была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества — твердым, жидким, газообразным и плазменным.

Таким образом, представление о «сквозной» гармонии бытия древние греки связывали с ее воплощением в Платоновых телах. Влияние знаменитого греческого мыслителя Платона сказалось и на Началах Евклида. В этой книге, которая на протяжении веков была единственным учебником геометрии, дано описание «идеальных» линий и «идеальных» фигур. Самая «идеальная» линия – прямая, а самый «идеальный» многоугольник – правильный многоугольник, имеющий равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничивать часть плоскости. Интересно, что Начала Евклида начинаются описанием построения правильного треугольника и заканчиваются изучением пяти Платоновых тел. Заметим, что Платоновым телам посвящена заключительная, то есть, 13-я книга Начал Евклида. Кстати, этот факт, то есть размещение теории правильных многогранников в заключительной (то есть как бы самой главной) книге Начал Евклида, дало основание древнегреческому математику Проклу, который был комментатором Евклида, выдвинуть интересную гипотезу об истинных целях, которые преследовал Евклид, создавая свои Начала. Согласно Проклу, Евклид создавал Начала не с целью изложения геометрии как таковой, а чтобы дать полную систематизированную теорию построения «идеальных» фигур, в частности пяти Платоновых тел, попутно осветив некоторые новейшие достижения математики!

Не случайно, что один из авторов открытия фуллеренов, Нобелевский лауреат Гарольд Крото в свой Нобелевской лекции начинает свой рассказ о симметрии как «основе нашего восприятия физического мира» и ее «роли в попытках его всестороннего объяснения» именно с Платоновых тел и «элементов всего сущего»: «Понятие структурной симметрии восходит к античной древности...» Наиболее известные примеры можно, конечно, обнаружить в диалоге «Тимей» Платона, где в разделе 53, относящемся к «Элементам», он пишет: «Во-первых, каждому (!), разумеется, ясно, что огонь и земля, вода и воздух суть тела, а всякое тело — сплошное» (!!) Платон обсуждает проблемы химии на языке этих четырех элементов и связывает их с четырьмя Платоновыми телами (в то время только четырьмя, пока Гиппарх не открыл пятый — додекаэдр). Хотя на первый взгляд такая философия может показаться несколько наивной, она указывает на глубокое понимание того, каким образом в действительности функционирует Природа».

Архимедовы тела

Полуправильные многогранники

Известно еще множество совершенных тел, получивших название полуправильных многогранников илиАрхимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.

Архимед (287 г. до н.э. – 212 г. до н.э)

Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. К примеру, тетраэдр (Рис. 1-а) можно усечь так, что его четыре треугольные грани превратятся в четыре гексагональные, и к ним добавятся четыре правильные треугольные грани. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр (Рис. 2).

 

(а) (б) (в)

 

(г) (д)

Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр

В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра, правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения всеАрхимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел — многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел, все грани которых одинаковы (как в молекуле С20, например).

Рисунок 3. Конструирование Архимедового усеченного икосаэдра
из Платонового икосаэдра

Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра? Ответ иллюстрируется с помощью рис. 3. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60.

Другую группу Архимедовых тел составляют два тела, именуемые квазиправильными многогранниками. Частица «квази» подчеркивает, что грани этих многогранников представляют собой правильные многоугольники всего двух типов, причем каждая грань одного типа окружена многоугольниками другого типа. Эти два тела носят название ромбокубооктаэдром и икосододекаэдром (Рис. 4).

(а) (б)

Рисунок 4. Архимедовы тела: (а) кубооктаэдр, (б) икосододекаэдр

Два последующих Архимедовых тела называются ромбокубооктаэдром и ромбоикосододекаэдром (Рис. 4).

(а) (б)

Рисунок 5. Архимедовы тела: (а) ромбокубооктаэдр, (б) ромбоикосододекаэдр

Наконец, существуют две так называемые «курносые» модификации – одна для куба (курносый куб), другая – для додекаэдра (курносый додекаэдр) (Рис. 6).

(а) (б)

Рисунок 6. Архимедовы тела: (а) курносый куб, (б) курносый додекаэдр

В упомянутой книге Венниджера «Модели многогранников» (1974) читатель может найти 75 различных моделей правильных многогранников. «Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии» — таково мнение русского математика Л.А. Люстернака, много сделавшего именно в этой области математики. Развитие этой теории связано с именами выдающихся ученых. Большой вклад в развитие теории многогранников внес Иоганн Кеплер (1571-1630). В свое время он написал этюд «О снежинке», в котором высказал такое замечание: «Среди правильных тел самое первое, начало и прародитель остальных – куб, а его, если позволительно так сказать, супруга – октаэдр, ибо у октаэдра столько углов, сколько у куба граней». Кеплер первым опубликовал полный список тринадцати Архимедовых тел и дал им те названия, под которыми они известны поныне.

Кеплер первым начал изучать так называемые звездчатые многогранники, которые в отличие от Платоновых и Архимедовых тел являются правильными выпуклыми многогранниками. В начале прошлого столетия французский математик и механик Л. Пуансо (1777-1859), геометрические работы которого относятся к звездчатым многогранникам, в развитие работ Кеплера открыл существование еще двух видов правильных невыпуклых многогранников. Итак, благодаря работам Кеплера и Пуансо стали известными четыре типа таких фигур (Рис.7). В 1812 г. О. Коши доказал, что других правильных звездчатых многогранников не существует.

Рисунок 7. Правильные звездчатые многогранники (тела Пуансо)

У многих читателей может возникнуть вопрос: «А зачем вообще изучать правильные многогранники? Какая от них польза?». На этот вопрос можно ответить: «А какова польза от музыки или поэзии? Разве все красивое полезно?». Модели многогранников, приведенные на Рис. 1-7, прежде всего, производят на нас эстетическое впечатление и могут использоваться в качестве декоративных украшений. Но на самом деле широкое проявление правильных многогранников в природных структурах послужило причиной огромного интереса к этому разделу геометрии в современной науке.

Тайна Египетского календаря

Что такое календарь?

Русская пословица гласит: «Время – око истории». Все, что существует во Вселенной: Солнце, Земля, звезды, планеты, известные и неизвестные миры, и все, что есть в природе живого и неживого, все имеет пространственно-временное измерение. Время измеряется путем наблюдения периодически повторяющихся процессов определенной длительности.

Еще в глубокой древности люди заметили, что день всегда сменяется ночью, а времена года проходят строгой чередой: за зимой наступает весна, за весной лето, за летом осень. В поисках разгадки этих явлений человек обратил внимание на небесные светила – Солнце, Луну, звезды – и на неукоснительную периодичность их перемещения по небосводу. Это были первые наблюдения, которые предшествовали зарождению одной из самых древних наук – астрономии.

В основу измерения времени астрономия положила движение небесных тел, которое отражает три фактора: вращение Земли вокруг своей оси, обращение Луны вокруг Земли и движение Земли вокруг Солнца. От того, на каком из этих явлений основывается измерение времени, зависят и разные понятия времени. Астрономия знает звездное время, солнечное время, местное время, поясное время, декретное время, атомное время и т.д.

Солнце, как и все остальные светила, участвует в движении по небосводу. Кроме суточного движения, Солнце обладает так называемым годичным движением, а весь путь годичного движения Солнца по небосводу называется эклиптикой. Если, например, заметить расположение созвездий в какой-нибудь определенный вечерний час, а затем повторять это наблюдение через каждый месяц, то перед нами предстанет иная картина неба. Вид звездного неба изменяется непрерывно: каждому времени года свойственна своя картина вечерних созвездий и каждая такая картина через год повторяется. Следовательно, по истечении года Солнце относительно звезд возвращается на прежнее место.

Для удобства ориентировки в звездном мире астрономы разделили весь небосвод на 88 созвездий. Каждое из них имеет свое наименование. Из 88 созвездий особое место в астрономии занимают те, через которые проходит эклиптика. Эти созвездия, кроме собственных имен, имеют еще обобщенное название – зодиакальные (от греческого слова «zoop» — животное), а также широко известные во всем мире символы (знаки) и разнообразные аллегорические изображения, вошедшие в календарные системы.

Известно, что в процессе перемещения по эклиптике Солнце пересекает 13 созвездий. Однако астрономы сочли нужным разделить путь Солнца не на 13, а на 12 частей, объединив созвездия Скорпион и Змееносец в единое — под общим названием Скорпион (почему?).

Проблемами измерения времени занимается специальная наука, называемая хронологией. Она лежит в основе всех календарных систем, созданных человечеством. Создание календарей в древности являлось одной из важнейших задач астрономии.

Что же такое «календарь» и какие существуют системы календарей? Слово календарь происходит от латинского слова calendarium, что буквально означает «долговая книга»; в таких книгах указывались первые дни каждого месяца –календы, в которые в Древнем Риме должники платили проценты.

С древнейших времен в странах Восточной и Юго-Восточной Азии при составлении календарей большое значение придавали периодичности движения Солнца, Луны, а также Юпитера и Сатурна, двух гигантских планет Солнечной системы. Есть основание предполагать, что идея создания юпитерианского календаря с небесной символикой 12-летнего животного цикла связана с вращением Юпитера вокруг Солнца, который делает полный оборот вокруг Солнца примерно за 12 лет (11,862 года). С другой стороны вторая гигантская планета Солнечной системы – Сатурн делает полный оборот вокруг Солнца примерно за 30 лет (29, 458 года). Желая согласовать циклы движения гигантских планет, древние китайцы пришли к идее введения 60-летнего цикла Солнечной системы. В течение этого цикла Сатурн делает 2 полных обороты вокруг Солнца, а Юпитер — 5 оборотов.

При создании годичных календарей используются астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Использование различных астрономических явлений привело к созданию у различных народов трех типов календарей: лунные, основанные на движении Луны, солнечные, основанные на движении Солнца, и лунно-солнечные.

Структура египетского календаря

Одним из первых солнечных календарей был египетский, созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическому. И тогда египтяне добавили к календарному году еще 5 дней, которые однако не были днями месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую структуру: 365 = 12´ 30 + 5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу египетской системы измерения времени, в частности по поводу выбора таких единиц времени, как час, минута, секунда. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2´ 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360°, то есть, почему 2p =360° =12´ 30° ? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание – число 60?

Связь египетского календаря с числовыми характеристиками додекаэдра

Анализируя египетский календарь, а также египетские системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12´ 30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетских системах?

Для ответа на это вопрос еще раз обратимся к додекаэдру, изображенному на Рис. 1-д. Напомним, что все геометрические соотношения додекаэдра основаны на золотой пропорции.

Знали ли египтяне додекаэдр? Историки математики признают, что древние египтяне обладали сведениями о правильных многогранниках. Но знали ли они все пять правильных многогранников, в частности додекаэдр и икосаэдр, как наиболее сложные из них? Древнегреческий математик Прокл приписывает построение правильных многогранников Пифагору. Но ведь многие математические теоремы и результаты (в частности Теорему Пифагора) Пифагор позаимствовал у древних египтян в период своей весьма длительной «командировки» в Египет (по некоторым сведениям Пифагор прожил в Египте в течение 22 лет!). Поэтому мы можем предположить, что знание о правильных многогранниках Пифагор, возможно, также позаимствовал у древних египтян (а возможно, у древних вавилонян, потому что согласно легенде Пифагор прожил в древнем Вавилоне 12 лет). Но существуют и другие, более веские доказательства того, что египтяне владели информацией о всех пяти правильных многогранниках. В частности, в Британском Музее хранится игральная кость эпохи Птоломеев, имеющая форму икосаэдра, то есть «Платонового тела», дуального додекаэдру. Все эти факты дают нам право выдвинуть гипотезу о том, что египтянам был известен додекаэдр. И если это так, то из этой гипотезы вытекает весьма стройная система, позволяющая дать объяснение происхождению египетского календаря, а заодно и происхождению египетской системы измерения временных интервалов и геометрических углов.

Ранее мы установили, что додекаэдр имеет 12 граней, 30 ребер и 60 плоских углов на своей поверхности (Табл. 1). Если исходить из гипотезы, что египтяне знали додекаэдр и его числовые характеристики 12, 30. 60, то каково же было их удивление, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. Таким образом, между такой совершенной пространственной фигурой, как додекаэдр, и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания. И тогда египтяне решили, что все их главные системы (календарная система, система измерения времени, система измерения углов) должны соответствовать числовым параметрам додекаэдра! Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30°, египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360°. Разделив каждые сутки на две части, следуя додекаэдру, египтяне затем каждую половину суток разделили на 12 частей (12 граней додекаэдра) и тем самым ввели час – важнейшую единицу времени. Разделив один час на 60 минут (60 плоских углов на поверхности додекаэдра), египтяне таким путем ввели минуту – следующую важную единицу времени. Точно также они ввели секунду – наиболее мелкую на тот период единицу времени.

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, египтянам удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин. Эти системы полностью согласовывалась с их «Теорией Гармонии», основанной на золотой пропорции, поскольку именно эта пропорция лежит в основе додекаэдра.

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком золотого сечения! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» — золотому сечению, сами того не подозревая!