Напряжения и деформации, что это?

Все эти рассуждения подводят нас к понятиям "напряжение" и "деформация". Когда мы говорили о силах, то имели в виду полные величины сил, действующих на тело. Такой силой мог быть любой груз. Когда мы говорили о смещении под нагрузкой, то имели в виду полные смещения независимо от размеров объекта, будь он большим или малым. Однако все это не позволяет нам сравнивать большой объект под большой нагрузкой с малым объектом под меньшей нагрузкой. Например, если из стали одного сорта изготовить крошечную деталь пишущей машинки и корпус воздушного лайнера, то какие характеристики этого материала, работающего в столь различных условиях, можно было бы сравнивать? Без ответа на этот вопрос мы не можем продолжать разговор о материалах и конструкциях. Нужные нам величины называются напряжением и деформацией. Напряжение - это нагрузка, отнесенная к единице площади, то есть

s = P/F,

где s - напряжение, Р - нагрузка, F - площадь. Приведенная формула также повседневна, как и привычные всем выражения "килограмм масла стоит 3 рубля" или "машина проходит 10 километров на одном литре бензина". Следовательно, если мы снова возьмем кирпич с поперечным сечением 25´12 см, то есть площадью сечения 300 см2, и я наступлю на него, приложив к нему силу своего веса 75 кг, то сжимающее напряжение, которое я вызову в кирпиче, будет

s = P/F = 75/300 = 0,25 кг/см2

Точно так же, если кирпичная опора моста имеет поперечное сечение 10´5 м и на мост въезжает локомотив весом в 125 т, то сжимающее напряжение в кирпичной кладке будет около 0,25 кг/см2. Теперь мы с полной определенностью можем сказать, что в обоих случаях напряжения в кирпиче примерно одинаковы, и если одна конструкция не разрушается, то, по-видимому, не разрушится и другая. Что касается кирпичей, то их молекулы поджимаются одна к другой одинаковыми силами, хотя вес локомотива и вес моего тела совершенно различны. Очевидно, что инженера должны интересовать именно такие величины.

Напряжение может быть выражено в килограммах на квадратный миллиметр (кг/мм2), килограммах на квадратный сантиметр (кг/см2), ньютонах на квадратный метр (Н/м2) или других подобных единицах.

* В 1969 году Международным комитетом мер и весов для измерения величины напряжения была принята единица "паскаль". (Па). Паскаль - давление, вызываемое силой 1Н (ньютон), равномерно распределенной по поверхности площадью 1 м2 - Прим. перев.

Разумеется, эти единицы применяются к любым поперечным сечениям и к любой точке, а не только к квадратным миллиметрам, квадратным сантиметрам и т.п. То, что цена одного килограмма масла 3 рубля, вовсе не означает, что ее используют лишь для веса в один килограмм. Деформация - это величина удлинения стержня под нагрузкой, отнесенная к начальной длине. Очевидно, что отрезки различной длины при одной и той же нагрузке получают в конструкциях различное удлинение. Если обозначить деформацию через e, то

e = Dl / l

где Dl - полное удлинение, а l - начальная длина. Так что, если стержень длиною 100 см под нагрузкой удлиняется на 1 см, его деформация будет 1/100, или 1%. Такая же деформация будет у стержня длиной 50 см, растянутого на 1/2 см, и т.д. При этом толщина стержня роли не играет, не важно также, что вызвало удлинение.

В данном случае нас интересует лишь то, насколько изменилось взаимное положение атомов и молекул. Деформация, так же как и напряжение, не зависит от размера образца. Деформация есть отношение удлинения к начальной длине, и, следовательно, она безразмерна и не зависит от того, какой системой единиц мы пользуемся.

Закон Гука

Роберт Гук был первым, кого осенила догадка о том, что происходит при нагружении твердого тела. Он был не только физиком, но и известным архитектором и инженером. Ему нередко случалось беседовать со знаменитым часовых дел мастером Томасом Томпионом (1639–1719). Они толковали о поведении пружин и маятников. Ничего не зная, конечно, о химических и электрических межатомных связях, Гук понял, что часовая пружина - всего лишь частный случай поведения любого твердого тела, что в природе нет абсолютно жестких тел, а упругость является свойством всякой конструкции, всякого твердого тела.

Свои претензии на приоритет Гук оговорил в работе "Десяток изобретений, которые я намерен опубликовать" (1676). Среди других проблем там была "Истинная теория упругости и жесткости". Под этим заголовком стояла лишь анаграмма ceiiinosssttuu, которую можно было понимать как угодно. Лишь тремя годами позже в трактате о пружинах "De potentia restitutiva" ("О восстанавливающей силе") Гук расшифровал ее латинской фразой "Ut tensio sic uis" - "Каково удлинение, такова и сила".

Иными словами, напряжение пропорционально деформации, и наоборот. Так, если упругое тело, например струна, удлиняется на 1 см под нагрузкой 100 кг, то под нагрузкой 200 кг удлинение составит 2 см и так далее, pro rata *. Это утверждение известно как закон Гука. Оно является краеугольным камнем всей техники.

* Пропорционально (лат.).

По существу, закон Гука является приближенным соотношением, которое вытекает из характера межатомных взаимодействий. Различные типы химических связей (Приложение I) в конечном счете дают зависимость действующей между двумя атомами силы от расстояния между атомами, как это схематически показано на рис. 3.

Рис. 3. Зависимость силы, действующей между двумя атомами, от расстояния между ними.

При очень больших деформациях - скажем 5–10% - от пропорциональности между напряжениями и деформациями не остается и следа. Но обычно деформации не превышают ±1%, а в этом диапазоне зависимость между напряжениями и деформациями линейна. Кроме того, для малых деформаций процесс нагрузки и разгрузки обратим, то есть кусок материала можно нагрузить и снять с него нагрузку тысячи и миллионы раз с одним и тем же результатом. Наглядный пример этому - пружинка балансира в часах, которая повторяет этот процесс 18 000 раз в час. Такой тип поведения твердого тела под нагрузкой называется упругим. Упругое поведение свойственно большинству технических материалов, хотя существуют и материалы с пластическим поведением. Наиболее ярко пластичность проявляется у таких веществ, как пластилин, оконная замазка - эти материалы не подчиняются закону Гука: после снятия внешних нагрузок их форма и размеры не восстанавливаются.

Вообще говоря, наука об упругости изучает напряжения и деформации в твердых телах. Не только во времена Гука, но даже и совсем недавно мы мало знали об упругих свойствах материалов. В тех случаях, когда их деформации превышали примерно 1%, они либо разрушались, либо утрачивали упругие свойства. Поэтому кривая зависимости межатомной силы от расстояния при больших смещениях атомов из положения равновесия (рис. 3) представляла главным образом академический интерес, на практике больших напряжений достигнуть не удавалось. И лишь сравнительно недавно появилась возможность растянуть очень прочные нитевидные кристаллы - усы - до деформаций от 3 до 6%. Эти опыты подтвердили, что закон Гука не всегда верен. Зависимость напряжения от деформации на графике отклоняется от прямой линии и следует кривой межатомной силы, которая была рассчитана ранее физиками-теоретиками. На рис. 4 показана такая кривая для кремниевого уса, деформированного более чем на 3%.

Рис. 4. Кривая напряжение-деформация очень кремниевого кремниевого уса, который был деформирован в испытательной машине до 3,6%. Поведение уса при больших деформациях не подчиняется закону Гука.

Модуль Юнга

Гук установил, что удлинения, укорочения, прогибы как пружин, так и других упругих тел пропорциональны приложенным к ним нагрузкам. Они зависят, конечно, от геометрических размеров и формы конструкции, а также от того, из какого материала она сделана. Мы не знаем, понимал ли Гук, в чем разница между упругостью как свойством материала и упругостью как функцией формы и размеров конструкции. Дело в том, что можно получить сходные кривые "нагрузка - удлинение" и для куска резинового шнура, и для завитого куска стали, который мы называем пружиной, - это сходство явилось источником бесконечных заблуждений. Примерно столетие после Гука существовала эта путаница: не всем была ясна разница между двумя понятиями упругости.

Около 1800 года Томас Юнг (1773–1829) пришел к выводу, что, если пользоваться не абсолютными значениями сил и смещений в конструкциях, а напряжениями и деформациями, то закон Гука можно записать в следующем виде:

Напряжение / Деформация = s/e = константа.

Юнг заключил, что эта константа является неотъемлемой характеристикой каждого химического вещества и представляет его жесткость. Мы называем эту константу упругости модулем Юнга и обозначаем буквой Е. Итак,

E = s/e

Следовательно, Е описывает жесткость материала как такового. Жесткость любого заданного объекта зависит не только от модуля Юнга материала, но и от геометрической формы объекта. Между прочим, считают, что Юнг "был человеком великой учености, но, к сожалению, он никогда даже не подозревал, что возможности заурядного ума ограничены" *. Его идея о модуле упругости была изложена в не очень понятной статье, опубликованной в 1807 году. К этому времени Юнгу запретили читать лекции в Королевском институте, так как считали, что он слишком далек от практики. Так и случилось, что одно из самых распространенных ныне и полезных технических понятий не было принято и внедрено в инженерную практику при жизни автора.

* S.В. Hamilton, History of Technology, 4.

Громадная важность модуля упругости для техники объясняется двумя причинами. Во-первых, нам нужно точно знать возникающие под нагрузками смещения как в конструкции в целом, так и в различных ее частях. Разнообразие конструкций огромно - мосты, самолеты, коленчатые валы и т.д. Посмотрите, например, на деформированное крыло самолета (рис. 5). Под действием рабочих нагрузок взаимодействие деталей в конструкции не должно нарушаться **. В таких расчетах нам в первую очередь нужны величины Е.

* Однажды я исследовал конструкцию вагона из пластика для Британских железных дорог. Двери, которые нормально открывались и закрывались, когда вагон был пуст, заклинивались, когда он был полон пассажиров в часы пик.

Рис. 5. Самолет, в котором деформация лонжеронов крыла составляет 1,6% (радиус кривизны балки = Толщина / [2×Деформация])

Во-вторых, хотя неспециалисту и позволено думать, что жесткости всех конструкционных материалов практически одинаковы и говорить "Отлично, это вполне жестко! Не видно никаких смещений", такие суждения не соответствуют действительному положению вещей. Нам необходимо знать модули упругости различных материалов (стали, древесины и т.д.) не только для того, чтобы рассчитать деформации конструкции, но и для того, что бы деформации ее отдельных элементов были согласованными - тогда и напряжения между этими элементами будут распределяться так, как мы хотели этого, проектируя конструкцию. Определяя модуль Юнга, мы разделили напряжение на безразмерное число - деформацию, следовательно, модуль должен иметь размерность напряжения (кг/мм2, Н/м2 и т.п.). Если деформация равна 1 (100%), то напряжение оказывается равным модулю упругости. Стало быть, модуль упругости можно считать таким напряжением, которое удваивает длину упругого образца (конечно, если он прежде не разрушится). Легко себе представить, что величина модуля упругости должна быть большой, обычно она по крайней мере в 100 раз больше разрушающего напряжения: ведь мы упоминали уже, что материалы, как правило, разрушаются, когда их упругая деформация не превышает 1%. Модуль Юнга для стали, например, составляет около 20000 кг/мм2.

Как мы уже говорили, величина E может сильно из меняться от одного вещества к другому. Ниже приведены величины модуля для некоторых материалов *.

* Поскольку кривая межатомных сил плавно проходит через нулевую точку величина E для любого материала одинакова как в случае растяжения, так и в случае сжатия. Если бы этого не было, математическая теория упругости оказалась бы еще сложнее. Однако модули материалов, содержащих довольно большие внутренние поры, при растяжении и сжатии иногда бывают различными. При сжатии модуль больше благодаря тому, что поры и трещины смыкаются.

Материал Е, кг/мм2
Резина 0,00007×104 (т.е. 0,7)
Неармированные пластики 0,015×104
Органические молекулярные кристаллы, фталоцианин 0,015×104
Древесина 0,15×104
Кость 0,3×104
Магний 0,4×104
Обычное стекло 0,7×104
Алюминий 0,8×104
Сталь 2×104
Окись алюминия (сапфир) 4×104
Алмаз 12×104

Таким образом, модуль самого жесткого из твердых тел (алмаза) почти в 200 000 раз больше модуля резины, тоже твердого тела. У резин модуль упругости очень мал, потому что резина состоит из длинных гибких молекулярных цепочек, которые в ненагруженном материале изгибаются, свиваются, сплетаются, словом, ведут себя подобно ниткам в спутанном клубке. Когда резину растягивают, изогнутые цепочки распрямляются, и совершенно очевидно, что необходимая для этого сила будет намного меньше той, которая потребовалась бы, чтобы растянуть пучок нитей, вытянутых в одном направлении. Совершенно иная картина наблюдается в кристалле. Прикладывая к нему силу, мы действуем непосредственно на межатомные связи, и единственная причина большой разницы в величине Е для разных кристаллов заключена в различной жесткости самих химических связей. Наклон прямого участка кривой межатомного взаимодействия очень сильно зависит от энергии межатомной связи. Но общая форма кривой для всех кристаллов одинакова.

Если обратить внимание на величину Е для фталоцианина, то нетрудно понять, почему огромное множество твердых химических соединений не может быть использовано в качестве конструкционных материалов. Вообще говоря, мы всегда хотим, чтобы наши конструкции были как можно жестче: колебания мостов и зданий и без того велики. А если сделать конструкцию из материала с жесткостью фталоцианина, она никуда не будет годиться. Сталь - наиболее жесткий из сравнительно дешевых материалов, и в этом одна из причин ее широкого использования. Пластики, даже армированные стекло пластики, имеют низкую жесткость, что ограничивает их применение для крупных конструкций.

Прочность

По-видимому, наиболее убедительно в рекламе продаваемой вещи звучат слова "не боится огня" и "не ломается". И хотя почти все мы знаем, что авторы рекламы не очень объективны, все же реклама находит адресата, и всегда можно встретить людей, искренне убежденных в том, что существуют (или, по крайней мере, должны существовать) какие-то действительно неразрушающиеся предметы. Однако создать такие предметы невозможно, поскольку энергия химических связей не бесконечна, и эти связи имеют определенную прочность. Нужно лишь, надежно закрепив предмет, достаточно сильно на него нажать или потянуть, и он сломается. Вопрос лишь в том, когда.

Следует четко усвоить, что прочность и жесткость не одно и то же. Жесткость (модуль Юнга) показывает, насколько податливым является материал. Прочность характеризуется напряжением, необходимым для того, что бы этот материал разрушить. Печенье - жестко, но непрочно; сталь - и жесткая, и прочная; нейлон - нежесткий, гибкий, но прочный; малиновое желе - и нежесткое, и непрочное. Вряд ли можно ожидать большей информации о свойствах твердого тела, если пользоваться лишь двумя его характеристиками.

Проще всего начать с прочности на разрыв. Это - напряжение, необходимое для того, чтобы разорвать материал на части, разрушив все межатомные связи вдоль поверхности разрыва. Представьте себе стержень, который растягивается вдоль оси. Стержень из очень прочной стали может выдержать растягивающее напряжение 300 кг/мм2. А вот обычный кирпич выдержит лишь 0,4–0,6 кг/мм2. Следовательно, прочность материалов, используемых в технике, может изменяться примерно в 1000 раз.

Ниже приведена прочность на разрыв некоторых наиболее часто применяемых материалов.

 

МАТЕРИАЛ ПРОЧНОСТЬ, кг/мм2
Металлы  
Стали  
рояльная проволока
высокопрочная сталь
низкоуглеродистая сталь
Чугун  
обычный 7–15
современный 15–30
Другие металлы  
чистый алюминий
сплавы алюминия 15–60
медь
латуни 12–40
магниевые сплавы 20–30
титановые сплавы 75–150
Неметаллы  
древесина, ель  
вдоль волокон
поперек волокон 0,3
стекло (оконное и посудное) 3–20
хорошая керамика 3–35
обычный кирпич 0,5
льняное волокно
хлопок
шелк
паутина
сухожилие
пеньковый канат
кожа
кость

Говоря о прочности, мы обычно имеем в виду прочность на разрыв, хотя материалы чаще работают на сжатие, чем на растяжение. Казалось бы, если мы пытаемся прижать атомы один к другому, это не должно вызывать разрушения. Однако разрушение происходит, хотя и представляет собой явление более сложное, чем разрыв. Под действием сжимающей нагрузки материал может ломаться самым различным образом.

Если мы сжимаем достаточно короткий стержень, на пример подставку, подпорку или что-нибудь в этом роде, из материала мягкого, пластичного, подобного меди или мягкой стали, то материал просто растечется в разные стороны, словно пластилин. Если стержень сделан из хрупкого материала (камень, стекло), то при сжатии он разлетится, обратившись в осколки и пыль (иногда это бывает довольно опасным). Если же вы навалитесь на тонкую трость, она выгнется, а затем сломается пополам - так ведут себя при сжатии любые длинные гибкие стержни и пластинки. Консервная банка под действием большой нагрузки, например если на нее наедет автомобиль, сомнется - этот вид разрушения похож на предыдущий. Аналогично разрушаются любые тонкостенные конструкции, каких много в кораблях, самолетах, автомобилях. Оказалось, что нелегко составить таблицу, которая давала бы наглядное представление о "прочности при сжатии". Чтобы определить эту величину, требуются знания и опыт, но, вообще говоря, этой характеристикой лучше не пользоваться.

Между величинами прочности материалов на растяжение и сжатие какого-либо универсального соотношения не существует. Отчасти это связано с тем, что в большинстве случаев трудно провести четкую грань между материалом и конструкцией. Например, куча кирпича обладает прочностью на сжатие и не имеет никакой прочности на растяжение. Несомненно, в данном случае куча кирпича представляет собой конструкцию, а не материал, но такие материалы, как чугун, бетон, гипс, на много прочнее при сжатии, чем при растяжении, и в основном по той же самой причине, что и куча кирпича: в них масса трещин. Цепи и канаты прочны на разрыв, но совсем не сопротивляются сжатию. Вероятно, их следует считать конструкциями. Древесина, однако, примерно в три-четыре раза прочнее при растяжении, чем при сжатии, потому что ее отдельные волоконца при сжатии сгибаются. Тем не менее древесина считается материалом, а не конструкцией.