Гниение возбудители,химизм

Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности

 

 

Гниение - процесс глубокого разложения белковых веществ. Одним из конечных продуктов разложения белковых веществ является аммиак, поэтому процесс гниения называют аммонификацией.

 

Белки - высокомолекулярные соединения, поэтому вначале они подвергаются внеклеточному расщеплению протеолитическими ферментами микроорганизмов, которые являются экзоферментами.

 

Расщепление белков происходит ступенчато:

 

белки > пептоны > полипептиды > аминокислоты

 

Образовавшиеся аминокислоты диффундируют внутрь клеток и могут быть использованы как в конструктивном, так и в энергетическом обмене.

 

Расщепление аминокислот начинается путем их дезаминирования и декарбоксилирования. При дезаминировании аминокислот происходит отщепление аминогруппы с образованием аммиака, органических кислот (масляной, уксусной, пропионовой, окси- и кетокислот) и высокомолекулярных спиртов.

 

В дальнейшем образование конечных продуктов зависит от условий протекания процесса и от вида микроорганизма - возбудителя гниения.

 

Аэробное гниение. Протекает в присутствии кислорода воздуха. Конечными продуктами аэробного гниения являются, кроме аммиака, диоксид углерода, сероводород и меркаптаны (обладающие запахом тухлых яиц). Сероводород и меркаптаны образуются при разложении серосодержащих аминокислот (цистина, цистеина, метионина).

 

Анаэробное гниение. Протекает в анаэробных условиях. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот (отнятие карбоксильной группы) с образованием дурно пахнущих веществ: индола, акатола, фенола, крезола, диаминов (их производные являются трупными ядами и могут вызывать отравления).

 

Возбудители гнилостных процессов

 

Возбудителями аэробного гниения являются спорообразующие бактерии рода Bacillus: Bacillus mycoides (грушевидная бацилла); Bacillus megaterium (капустная бацилла); Bacillus mesentericus (картофельная палочка); Bacillus subtilis (сенная палочка), а также неспорообразующие палочки: Serrate marcencens (чудесная палочка); Proteus vulgaris (палочка протея); Escherichia coli (кишечная палочка) и другие микроорганизмы.

 

Возбудителями анаэробного гниения являются анаэробные споровые палочки рода Clostridium (протеолитические клостридии): Clostridium sporogenes, Clostridium subterminalis, Clostridium perfringens, Clostridium botulinum.

 

Практическое значение гнилостных процессов

 

Гнилостные микроорганизмы нередко наносят большой ущерб народному хозяйству, вызывая порчу богатых белками продуктов питания: мяса и мясопродуктов, яиц, молока, рыбы и рыбопродуктов и др.

 

В природе (в воде, почве) гнилостные бактерии активно разлагают отмершие животные и растительные ткани, минерализуют белковые вещества и тем самым играют важную роль в круговороте углерода и азота.

32. 32. Гниение - это процесс глубокого разложения белковых веществ микроорганизмами. Продукты разложения белков микроорганизмы используют для синтеза веществ клетки и в качестве энергетического материала.

 

Химизм. Гниение - сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава белков, условий процесса и видов вызывающих его микроорганизмов.

 

Белковые вещества не могут поступать непосредственно в клетки микроорганизмов, поэтому использовать белки могут только микробы, которые обладают ферментами - экзопротеазами.

 

Процесс распада простых белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептиды. Они поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот.

 

Нуклеопротеиды под действием гнилостных микробов расщепляются на белковый комплекс и нуклеиновые кислоты. Затем белки разлагаются до аминокислот, а нуклеиновые кислоты распадаются на фосфорную кислоту, углеводы и смесь азотсодержащих оснований.

 

Аминокислоты используются микроорганизмами на синтез клетки или подвергаются ими дальнейшим изменениям, например дезаминированию. Дезаминирование различают: гидролитическое, окислительное и восстановительное.

 

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит декарбоксилирование аминокислоты, то образуется спирт, аммиак и углекислый газ.

 

При окислительном дезаминировании образуются кетокислоты и аммиак.

 

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак. гниение химизм антисептик копчение

 

Среди продуктов разложения аминокислот в зависимости от строения их paдикала обнаруживаются различные органические кислоты и спирты. При разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты; пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол - вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные - меркаптаны. Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.

 

Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и С02.

 

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды). Некоторые производные птомаинов обладают ядовитыми свойствами.

 

Под воздействием аэробных микроорганизмов, азотистые и безазотистые органические соединения подвергаются окислению, так что могут быть полностью минерализированы. В этом случае конечными продуктами гниения являются аммиак, углекислый газ, вода, соли серной и фосфорной кислот. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме NH3 и С02 накапливаются разные, указанные выше органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, сообщающие гниющему материалу отвратительный запах.

 

Характеристика возбудителей. Наиболее активными возбудителями гнилостных процессов являются бактерии. Среди них есть спорообразующие и бесспоровые, аэробные и анаэробные. Мезофилы, холодоустойчивые и термостойкие, большинство чувствительных к кислотности среды и повышенному содержанию в ней поваренной соли. Наиболее распространенными гнилостными бактериями являются следующие.

 

Картофельная и сенная палочки - аэробные, подвижные, грамположительные, спорообразующие бактерии. Их споры термоустойчивы. Температурный оптимум в пределах 30-450С, максимум роста - при t0 55-600 С, при t0 ниже 50 не размножаются.

 

Бактерии рода Pseudomonas - аэробные, подвижные палочки с полярным жгутом, бесспоровые, грамотрицательные. Некоторые виды синтезируют пигменты, их называют флуоресцирующими псевдомонасы. Есть холодоустойчивые мин.t0 роста от -20 до -50 С. Они способны окислять углеводы с образованием кислот, выделять слизь. Развитие и биохимическая активность тормозит при рН ниже 5,5 и 5-6 % - ной концентрации NaCI в среде. Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и мицелиальных грибов.

 

Proteus vulgaris - мелкие, грамотрицательные, бесспоровые палочки с резко выраженными гнилостными свойствами, факультативные анаэробы. Сбраживает углеводы с образованием газа и кислоты. В зависимости от условий жизни эти бактерии способны заметно менять форму и размеры. Хорошо развивается при t0 250 С и 370 С, прекращает размножаться при t0 около 5-100 С, но может сохранятся и в замороженных продуктах.

 

Особенностью его является энергичная подвижность. Это свойство лежит в основе метода выявления протея в пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды выделяют токсические для человека вещества.

 

Clostridium putrificum - анаэробная подвижная, спорообразующая палочка. Относительно крупные споры ее располагаются ближе к концу клетки, которая при этом приобретает форму барабанной палочки. Споры довольно термоустойчивы. Углеводы не сбраживает, белки разлагает с образованием большого количества газа. Оптимальная t0 развития 37-430 С, минимальная - 50 С.

 

Clostridium sporogenes -анаэробная, подвижная, спороносная палочка. Споры термоустойчивы, в клетке они расположены центрально. У нее очень быстрое образование спор. Сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная t0 развития 35-400 С, минимальная - около 50 С.

 

Оба вида клостридий - возбудители порчи баночных консервов (рыбных, мясных и др.).

 

Гнилостные микроорганизмы наносят большой ущерб народному хозяйству, вызывая порчу ценнейших, богатых белками продуктов питания, например рыбы и рыбопродуктов, мяса и мясопродуктов, яиц, молока и др. Но эти же микроорганизмы играют большую положительную роль в круговороте азота в природе, минерализуя белковые вещества, попадающие в порчу, воду.

 

2. Влияние химических веществ на жизнеспособность микроорганизмов. Антисептические вещества. Требования к антисептикам используемым для консервирования пищевых продуктов. Копчение продуктов как способ их консервирования

 

Химические вещества.

 

Химический состав среды является одним из главных факторов развития микроорганизмов, он должен удовлетворять потребность их в питательных и энергетических веществах. Он определяет реакцию среды (рН) и ее окислительно-восстановительные условия. Среди химических веществ могут быть такие, которые задерживают развитие микроорганизмов и вызывают их гибель. Их называют антисептиками. Характер действия их разнообразен. Одни подавляют жизнедеятельность или задерживают размножение чувствительных к ним микробов, такое действие называют - бактериостатическим (в отношении бактерий) или фунгистатическим(в отношении мицелиальных грибов). Другие вещества вызывают гибель микроорганизмов, оказывая на них бактерицидное или фунгицидное действие. В малых дозах многие химические яды оказывают благоприятное действие, стимулируя размножение или биохимическую активность микробов. Момимо концентрации, эффективность действия химических вещепств на микроорганизмы зависит от природы вещества, биологических особенностей микроорганизма, продолжительности воздействия на него, температуры, состава и рН среды.

 

Чувствительность различных микроорганизмов к одному и тому же антисептику не одинакова. Споры устойчивее вегетативных клеток.

 

Из неорганических соединений наиболее сильнодействующими являются соли тяжелых металлов. Ионы некоторых тяжелых металлов, золота, меди, серебра, присутствуютв растворах в ничтожно малых концентрациях, не поддающихся непосредственному определению, оказывают не менее губительное действие на организмы. Это специфическое действие называется - олигодинамическим. Олигодинамические свойства серебра можно использовать для дезинфекции питьевой воды.

 

Бактерицидное действие проявляют многие окислители (хлор, йод, перекись водорода, марганцовокислый калий); минеральные кислоты (сернистая, борная, фтористо-водородная).

 

Воздействуют на микроорганизмы сероводород, окись углерода, сернистый газ.

 

Многие органические соединения ядовиты для микробов. В различной степени губительно воздействие фенолов, альдегидов, особенно формальдегида, спиртов, органических кислот (салициловая, уксусная, бензойная, сорбиновая). Бактерицидным действием обладают эфирные масла, смолы, дубильные вещества, многие красители (генцианвиолет, бриллиантовая зелень, фуксин).

 

Среди микроорганизмов имеются формы, устойчивые к действию клеточных и метаболических ядов, а некоторые обладают способностью даже использовать их. Например фенол, H2S, окись углерода.

 

Механизм действия антисептиков различен. Многие из них повреждают клеточные стенки, нарушают проницаемость цитоплазматической мембраны. Проникая в клетку, они вступают во взаимодействие с теми или иными компонентами ее, в результате чего значительно нарушаются обменные процессы. Соли тяжелых металлов, формалин, фенолы воздействуют на белки цитоплазмы, являются ядами для ферментов. Спирты, эфиры растворяют липиды клеточных мембран.

 

Многие антисептические вещества используют в медицине, сельском хозяйстве, промышленности и в быту как дезинфицирующие средства для борьбы с болезнетворными микробами. Широко применяют хлор и его соединения для дезинфекции питьевой воды, тары, оборудования, инвентаря.

 

Антисептические вещества используют для защиты от микробных поражений текстильных материалов, древесины, бумаги и изделий из нее и других материалов и объектов.

 

Применение антисептиков для консервирования продуктов ограничено и строго нормируется санитарным законодательством.

 

При выборе тех или иных химических веществ для обработки сырья, готовой продукции исходят из цели обработки назначения продукции.

 

Химические вещества применяются для обработки пищевых продуктов в малых дозах, поэтому они должны обладать высоким биоцидным или биостатическим действием на микроорганизмы, но одновременно должны быть безвредными для человека, не оказывать отрицательного влияния на продукты легко удаляться из них перед употреблением. Они не должны вступать в реакции с веществами продукта, тарой, материалами технологической аппаратуры. Кроме того, они должны быть экономически выгодными и доступными для использования.

 

В последние годы большой интерес вызывают новый класс антисептиков -полимерные дезинфицирующие средства, они более эффективны и менее опасны для человека.

 

Среди широкого спектра полимерных биоцидов выделяется группа соединений, содержащих в своем составе полигуанидины. Гуанидины - новые антисептики значительно эффективней четвертичных аммониевых соединений, ПАВ, производных фенола и хлорактивных дезинфицирующих препаратов. Например, «БИОР-1», «ПОЛИСЕПТ-ОП» и др.

 

Новым направлением в практике сокращения потерь пищевого сырья и продуктов, защиты от микроорганизмов является применение экологически безопасных полимерных пленок на основе латексов. Латексы - высокомолекулярные соединения селективной проницаемости по отношению к летучим соединениям, содержащие минимальные количество гигиенически нормируемых компонентов.

 

В стране разрешено использовать немногие химические консерванты в малых дозах и только для некоторых пищевых продуктов.

 

На принципе антисептики основано копчение мясных и рыбных продуктов. При копчении продукты пропитываются летучими антисептическими веществами дыма или аналогичными антисептиками коптильной жидкости, которую применяют вместо дыма. Наибольшим бактерицидным и фунгицидным действием обладает формальдегид, фенолы и органические кислоты.

 

При копчении на микрофлору продукта оказывает влияние и другие факторы. Так, при холодном копчении некоторое обезвоживание продукта (при сушке) и повышенное содержание соли, а при горячем копчении высокая температура.

 

В качестве заменителей дыма при копчении разработаны фенольные соединения бактерицидного действия. Фенольные компоненты содержат значительное число полярных группировок (гидроксильных, альдегидных, кетонных, кислотных, аминных). Они способны взаимодействовать с поверхностью колбасных изделий, в частности с белком, являющимся поверхностно-активным веществом, приобретающим в водных растворах свойства полиэлектролита. Фенольные компоненты, адсорбируясь на поверхности колбасных изделиях, сокращают диффузию воды и питательных веществ в клетки микроорганизмов и вывод продуктов обмена, что приводит их к гибели.

33Влажность среды оказывает большое влияние на развитие микроорганизмов. В клетках большинства микроорганизмов содержится воды до 75-85%; с водой поступают питательные вещества в клетку и удаляются их нее продукты жизнедеятельности. Поэтому микроорганизмы могут развиваться только в субстратах, имеющих свободную воду (в капельно-жидком виде). Вода в связанной форме для них недоступна.

 

Рост, размножение микробов возможны только при наличии в субстрате определенного количества свободной воды. С понижением влажности субстрата в пределах, допускающих развитие микробов, интенсивность размножения их падает, а при удалении влаги из субстрата ниже определенного уровня - совсем прекращается

 

Потребность во влаге у различных микроорганизмов колеблется в широких пределах. Различают микроорганизмы: гидрофиты - влаголюбивые, мезофиты - средневлаголюбивые и ксерофиты - сухолюбивые. Бактерии в преобладающем большинстве - гидрофиты. Минимальная влажность среды, при которой еще возможно развитие бактерий, равна 20-30%.

 

В высушенном состоянии микроорганизмы, хотя и не проявляют заметно своей жизнедеятельности, но сохраняют жизнеспособность в течение более или менее длительного времени. Бесспоровые бактерии отличаются различной устойчивостью к высушиванию. Уксуснокислые и нитрифицирующие бактерии после высушивания быстро погибают, брюшнотифозные и туберкулезные бактерии, многие стафилококки и микрококки более стойки к высушиванию и могут сохраняться в сухом виде неделями и месяцами; высушенные молочнокислые бактерии сохраняют жизнеспособность в течение нескольких месяцев и даже лет.

 

Особенно легко переносят высушивание вегетативные клетки микробов, замороженные и высушенные в вакууме. Этот метод - леофильная сушка - в настоящее время применяется для длительного хранения культур микроорганизмов. Такие культуры годами остаются жизнеспособными, не изменяя своих свойств (3, стр. 61) .

 

1.1 Понятие о водной активности субстрата

 

 

Физические свойства субстратов, также как и их химические характеристики, имеют важное значение для производства качественного субстрата. Такие физические параметры субстрата как структура, влагоемкость, влажность, аэрация определяют состав и направление развития микрофлоры, а также рост мицелия культивируемого гриба.

 

Массу субстрата упрощенно можно рассматривать как трехфазную систему, состоящую из твердой, жидкой и газовой фазы

 

Твердая фаза - это сухое вещество субстрата, состоящее из частиц различного размера. Твердая фаза обеспечивает мицелий гриба питательными веществами. Важная характеристика твердой фазы - это структура. Структура определяется размерами частиц (дисперсность) и их прочностью.

 

Пустоты между частицами заполнены воздухом - это газовая фаза. Состав газовой фазы субстрата может сильно отличаться от состава наружного воздуха. Для развития мицелия как аэробного организма обязательно наличие в субстратном воздухе определенного количества кислорода, т.е. определенный уровень аэрации (4, стр. 78).

 

В увлажненном субстрате часть свободного пространства между частицами и внутри частиц заполнена водой - это водная фаза. Наличие достаточного количества жидкости в субстрате необходимо для обеспечения водой мицелия и плодовых тел грибов, состоящих на 90% из воды. Кроме того, характер питания грибов (осмотический) связан с выделением в наружную среду ферментов и поглощением всей поверхностью мицелия продуктов гидролиза, а этот процесс идет активно только в водной среде.

 

Твердая, газовая и водная фазы субстрата тесно связаны, и при приготовлении субстрата необходимо учитывать состояние каждой фазы. Например, в переувлажненном субстрате газовая фаза становится слишком маленькой в объеме (вытесняется водой) и уже не обеспечивает необходимого уровня газообмена или аэрации. Вследствие этого в субстрате формируются анаэробные условия неблагоприятные для развития мицелия.

 

 

Влажность субстрата сказывается на урожайности. Если воды в субстрате мало, то грибы появляются только в первую волну или вторая волна очень незначительна. Если воды слишком много, то снижается выход грибов на первой и второй волне плодоношения (табл.). Избыток воды в субстрате, также как переуплотнение субстрата, может способствовать образованию анаэробных зон, что снижает продуктивность культуры.

 

1.2 Сушка как способ консервирования пищевых продуктов

 

Технология сушки, как метод консервирования пищевых продуктов относится к ранней истории человеческого существования. Принцип сушки заключается в уменьшении микробиологической активности за счет удаления свободной влаги из пищевых продуктов. Сушка приводит к уменьшению веса, а часто и объема, что очень удобно для транспортировки и существенно снижает затраты. Высушенные пищевые продукты имеют почти неограниченный срок хранения в надлежащих условиях. Эти неоспоримые достоинства выводят сушку на передний план по сравнению с другими методами консервирования (5, стр. 89).

 

Область применения сушильного оборудования в пищевой промышленности весьма обширна. Это и оборудование для сушки овощей, оборудование для сушки фруктов, для сушки мяса и рыбы, зелени, грибов, ягод, дрожжей, зерна, круп, макарон, отрубей и комбикормов; это и оборудование для сушки сырья фармацевтической промышленности и лекарственных трав; это также и оборудование для сушки и жарки орехов, семечек (очищенных и неочищенных), кукурузных зерен, попкорна и других продуктов; это и оборудование для сушки и производства первых и вторых блюд (каш, пюре, лапши и др.) быстрого приготовления; это и оборудование для сушки и производства закусок к пиву (кальмаров, креветок и др. морепродуктов, мяса, сыра, а также снеков, чипсов, и др.). Это, наконец, и оборудование для сушки и производства специй, панировочных смесей, начинок и многого другого.

 

В настоящее время существует несколько широко используемых в промышленных условиях методов сушки, однако ни один из них не может в полной мере обеспечить экономичные и высококачественные пищевые продукты. Каждый метод имеет свои собственные ограничения, как на потребление энергии, так и на качество готового продукта. Длительность технологического процесса, высокие капиталовложения на приобретение оборудования, чувствительность многих пищевых продуктов и медицинских препаратов к высоким температурам являются ограничивающими условиями, а сохранность цвета, текстуры, питательной ценности пищевых продуктов, являются критическими факторами при выборе метода обезвоживания.

 

Наиболее часто используемыми методами сушки являются: сублимационная сушка, сушка распылением, конвективная сушка, туннельная сушка и барабанная сушка, сушка на солнце. Сушка солнцем и сушка горячим воздухом вызывают существенные потери цвета, что значительно ухудшает потребительские свойства продукта, также наблюдаются значительные потери витамина С и ухудшается способность продукта к регидратации. Барабанная сушка, разработанная для жидких продуктов, приводит к серьезным качественным потерям, в основном из-за использования воздуха, C). Сушка распылением, часто используемая нагретого до температуры (120є - 170 для жидких продуктов, с основными ограничениями в высокой стоимости процесса и требованием относительно высокого влагосодержания подачи, для гарантии C) вызывают распыления. Распыление и высокие температуры (150є - 300 значительные потери аромата и летучих компонентов. Механическое воздействие, которому подвергается сырье вследствие распыления, делает эту технологию неприемлемой для чувствительных продуктов. К тому же очень велика вероятность окисления распыленного материала.

 

Так как одним из основных показателей, характеризующих качество высушенного продукта, является сохранность витаминного состава, в частности витамина С и каротина, которые наиболее чувствительны к окислению и температурному воздействию, мы приведем сводную таблицу зависимости сохранности витаминного состава при различных методах сушки.

 

1.3 Гидрофиты, мезофиты, ксерофиты

 

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают три основных экологических типа: гигрофиты, мезофиты и ксерофиты (7, стр. 90).

 

Ксерофиты - это растения сухих местообитаний, способные переносить значительный недостаток влаги - почвенную и атмосферную засуху. Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. К этой группе принадлежат виды пустынь, сухих степей, саванн, колючих редколесий, сухих субтропиков. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции).

 

Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды при ее недостатке в почве и, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха и высоких температурах. Следовательно, для преодоления недостатка влаги возможны разные пути: увеличение ее поглощения и сокращение расхода, кроме того, способность переносить большие потери воды. Все это используется ксерофитами при адаптации к сухости, но у разных растений в неодинаковой степени, в связи с чем некоторые авторы различают два основных способа преодоления ксерофитами засухи: возможность противостоять иссушению тканей, или активное регулирование водного баланса, и способность выносить сильное иссушение.

 

В зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов (по Генкелю П.А.): эуксерофиты, гемиксерофиты, пойкилоксерофиты.

 

К группе ксерофитов относят и суккуленты - растения с сочными листьями или стеблями. Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями (кактусы, некоторые молочаи).

 

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев имеют своеобразный внешний облик, за что получили название склерофитов. Облик типичного склерофита легко представить на примере чертополоха - Carduus crispus и пустынных полыней, ковылей, саксаулов.

 

Мезофиты - эта группа включает растения, произрастающие в средних условиях увлажнения. Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений.

 

Мезофиты - группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях. Они связаны переходами с другими экологическими типами растений по отношению к воде, так что четкую границу между ними провести очень трудно. Так, среди луговых мезофитов выделяются виды с повышенным влаголюбием, предпочитающие постоянно сырые или временно заливаемые участки (лисохвост луговой - Alopecurus pratensis, бекмания обыкновенная - Beckmannia eruciformis).

 

Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога - Impatiens nolitangere). С другой стороны в местообитаниях с периодическим или постоянным (небольшим) недостатком влаги много мезофитов с теми или иными ксероморфными признаками с повышенной физиологической устойчивостью к засухе. Эта группа переходная между мезофитами ксерофитами, - ксеромезофиты. Примером могут служить многие виды северных степей, сухих сосновых боров, песчаных местообитаний: клевер-белоголовка - Trifolium montanum, подмаренник желтый - Galium verum и другие.

 

Особое место среди мезофитов занимают степные и пустынные весенние эфемеры и эфемероиды. К этой группе принадлежат растения, ранней весной, покрывающие степи и пустыни разноцветным цветущим ковром (многолетники - тюльпаны, гусиные луки; однолетники - маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды - в виде покоящихся луковиц, клубней, корневищ. Кроме весенних существуют и осенние эфемероиды, произрастающие в районах с климатическим ритмом средиземноморского типа. Сюда относятся виды родов Crocus, Scilla и другие.

 

По многим особенностям структуры и физиологии близки к ксерофитам растения, которые по тем или иным причинам испытывают недостаток влаги, сопряженный с действием низких температур. Иногда такие виды в качестве особого подразделения включают в группу ксерофитов, иногда выделяют в самостоятельные экологические типы - психрофиты и криофиты.

 

Психрофиты - растения влажных и холодных почв в холодных местообитаниях высокогорий и северных широт. Несмотря на достаточное увлажнение почвы, они часто испытывают недостаток влаги (или из-за физиологической сухости, вызванной низкими температурами, или в связи с преобладанием в почве недоступной влаги, как, например, на торфянистых почвах). Среди психрофитов есть травянистые растения (например, злаки северных лугов: белоус - Nardus strikta; высокогорные кавказские злаки: овсяница пестрая -Festuka varia), высокогорные, болотные и тундровые кустарники и кустарнички, как вечнозеленые (вереск - Calluna vulgaris), так и с опадающей листвой (карликовые ивы - Salix polaris, S. herbacea).К психрофитам относятся и хвойные древесные породы умеренных и северных широт.

 

Криофиты в экологическом отношении очень близки к психрофитам и связаны с ними переходными формами. Это растения сухих и холодных местообитаний - сухих участков тундр, скал, осыпей. Обычно они рассматриваются и характеризуются вместе с психрофитами, поскольку у них много сходных морфологических и физиологических черт. Но среди криофитов есть и весьма своеобразные формы - это растения-подушки высокогорных холодных пустынь.

 

Гидрофиты - это водные растения. По образу жизни и строению среди них можно выделить погруженные растения и растения с плавающими листьями. Погруженные растения подразделяют на укореняющиеся в донном грунте и взвешенные в толще воды. Из высших растений к первым принадлежат телорез - Stratiotes aloides, шильник водяной - Subularia aquatika. В эту же группу входят водоросли, прикрепленные к грунту. Из растений, взвешенных в толще воды, можно назвать роголистник погруженный--Ceratophyllum demersum, пузырчатку обыкновенную - Utrikularia vulgaris, а также многочисленные виды планктонных водорослей.

 

Растения с плавающими листьями используют частично водную, частично воздушную среду. Из них укореняются в грунте кувшинки из рода Nymphaea, кубышки из рода Nuphar, рдесты, орех водяной - Trapa natans.

 

Многие виды наряду с плавающими на поверхности воды листьями имеют и подводные. Плавают на поверхности воды, не укореняясь, ряски, водокрас.

 

К настоящим водным растениям очень близко примыкает и обычно вместе с ними рассматривается группа гелофитов или амфибий - земноводных растений. Это виды береговых и прибрежных местообитаний с избыточным или переменным увлажнением. Они могут расти как в воздушной среде, так и частично погруженными в воду, могут выносить и полное временное заливание. Как в природе нет резкой границы между водными и наземными местообитаниями для растений, так и группа гелофитов связана незаметными переходами, с одной стороны, с настоящими гидрофитами, с другой - с наземными гигрофитами и гигромезофитами. Примеры гелофитов - растений прибрежной полосы пресноводных водоемов и рек: стрелолист - Sagittaria sagittifolia, ежеголовка - Sparganium ramosum.

34. Влияние концентрации среды.

Среда с повышенной концентрацией веществ оказывает губительное воздействие на микробы. При повышении концентрации соли до 10—20 % и сахара до 60—70 % многие микробы погибают. Действие высокой концентрации соли используют при посоле рыбы, мяса. Действие высокой концентрации сахара используют при приготовлении варенья, джема, повидла.

На жизнедеятельность микроорганизмов различное воздействие оказывает реакция среды. Большинство микробов развивается в нейтральной среде (рН = 7) или слабощелочной (рН = 8), а плесени и дрожжи — в слабокислой среде (рН = 3—6). Изменяя реакцию среды, можно влиять на развитие микроорганизмов. На этом основаны способы консервирования, маринования продуктов, в процессе которых подавляется развитие гнилостных бактерий.

Жизнедеятельность микроорганизмов протекает в средах, представляющих собой более или менее концентрированные растворы веществ. Одни из микроорганизмов обитают в пресной воде, где концентрация растворенных веществ незначительна и, следовательно, невелико осмотическое давление (обычно десятые доли атмосферы). Другие же микробы, наоборот, живут в условиях высоких концентраций веществ и значительного осмотического давления, достигающего иногда десятков и сотен атмосфер.

 

Большинство микроорганизмов может существовать в средах со сравнительно небольшой концентрацией растворенных веществ и обладает значительной чувствительностью к ее колебаниям.

 

Повышение концентрации веществ в среде и связанного с ней осмотического давления приводит к плазмолизу клетки, на­рушению обмена веществ между нею и средой и затем к гибели клетки. Однако некоторые микроорганизмы способны сохранять жизнеспособность в условиях повышенной концентрации продолжительное время.

 

Плесневые грибы переносят повышенные концентрации веществ (как и другие неблагоприятные факторы) легче, чем бактерии.

 

На губительном действии высоких концентраций веществ на микроорганизмы основано консервирование пищевых продуктов поваренной солью и сахаром.

 

Содержание в среде поваренной соли до 3% замедляет размножение многих микроорганизмов. Особенно чувствительны к действию поваренной соли гнилостные и молочнокислые бактерии. При содержании в продукте около 10% соли жизнедея­тельность этих бактерий подавляется полностью.

 

Малоустойчивы к действию поваренной соли многие возбудители пищевых отравлений, например, паратифозные бактерии и бацилла ботулизма; их развитие приостанавливается при концентрации соли около 9%.

 

Поваренную соль используют для консервирования рыбы, мяса, овощей и других продуктов.

 

Микроорганизмы погибают также в растворах, содержащих 60-70% сахара. С помощью сахара консервируют ягоды, фрукты, молоко и др.

 

Некоторые микроорганизмы, живущие обычно в условиях невысокого осмотического давления, сравнительно хорошо раз­виваются и на засоленных или засахаренных продуктах. Встречаются и такие микробы, которые способны развиваться нор­мально только в условиях высокой концентрации поваренной соли (например, в тузлуке). Такие микробы называются галофилами. Нередко галофилы вызывают порчу соленых продовольственных товаров. Консервирующее действие сахара значительно слабее, чем поваренной соли, поэтому в практике консервирования сахаром продукты подвергают еще нагреванию в герметически закупоренной таре.