Структурные уровни организации материи

Согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структу­рированные, иерархически организованные системы.

В естественных науках выделяются два больших класса мате­риальных систем: системы неживой природы и системы живой природы.

В неживой природе в качестве структурных уровней организа­ции материи выделяют элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и пла­нетные системы, звезды и звездные системы – галактики, сис­темы галактик – метагалактику и мегагалактику – Вселенную.

В живой природе к структурным уровням организации мате­рии относят системы доклеточного уровня – нуклеиновые кисло­ты и белки; клетки как особый уровень биологической организа­ции, представленные в форме одноклеточных организмов и элемен­тарных единиц живого вещества; многоклеточные организмы рас­тительного и животного мира; надорганизменные структуры, включающие в себя виды, популяции и биоценозы и, наконец, био­сферу как всю маccy живого вещества.

В природе все взаимосвязано, поэтому можно выделить такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта.

Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.

В науке выделяются три уровня строения материи.

1. Макромир – мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

2. Микромир – мир предельно малых, непосредственно не наблюдаемых микробъектов (элементарных частиц), пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни – от бесконечности до 10-24 сек.

3. Мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами (1 свет год = 0,3 Пс (парсека) = 206625 астрон. ед. длины, 1 а.е.дл. =149.6 млн. км. – расстояние от Земли до Солнца), а время существования космических объектов – миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

 

лекция

Методы научного познания.

Методология – наука о происхождении методов, их сущности и эффективности.

Метод — это совокупность действий, призванных помочь достижению желаемого результата. Первым на значение метода в Новое время указал французский математик и философ Р. Декарт в работе «Рассуждения о методе». Но еще ра­нее один из основателей эмпирической науки Ф. Бэкон сравнил метод познания с циркулем. Способности людей различны, и для того чтобы всегда добиваться успеха, требуется инструмент, ко­торый уравнивал бы шансы и давал возможность каждому полу­чить нужный результат. Таким инструментом и является научный метод.

Каждая наука имеет не только свой особый предмет исследования, но и специфический метод, имманентный предмету. Единство предмета и метода по­знания обосновал немецкий философ Гегель.

В соответствии с уровнями исследований выделяются эмпири­ческие и теоретические методы.

К эмпирическим методам относятся: наблюдение — целена­правленное восприятие явлений объективной действительности; описание — фиксация средствами естественного или искусствен­ного языка сведений об объектах; измерение — количественная характеристика свойств объектов; сравнение — сопоставление объектов по каким-либо сходным свойствам или сторонам; экс­перимент — исследование в специально создаваемых и контроли­руемых условиях, при котором осуществляется активное воздействие на объект с помощью приборов и установок.

К теоретическим методам относятся: формализация — по­строение абстрактно-математических моделей, раскрывающих сущ­ность изучаемых процессов действительности; аксиоматизация — построение теорий на основе аксиом (утверждений, доказатель­ства истинности которых не требуется); гипотетико-дедуктивный метод — создание системы дедуктивно связанных между собой гипотез, из которых выводятся утверждения об эмпирических фактах.

К общенаучным методам относят методы, которые применяются и на эмпирическом и теоретическом уровнях.

К общенаучным методам относятся:

анализ — расчленение целостного предмета на составные части (стороны, признаки, свойства или отношения) с целью их все­стороннего изучения;

синтез — соединение ранее выделенных частей предмета в еди­ное целое;

абстрагирование — отвлечение от несущественных для дан­ного исследования свойств и отношений изучаемого явления с одновременным выделением интересующих свойств и отноше­ний;

обобщение — прием мышления, в результате которого устанав­ливаются общие свойства и признаки объектов;

индукция — метод исследования и способ рассуждения, при котором общий вывод строится на основе частных посылок;

дедукция — способ рассуждения, посредством которого из об­щих посылок с необходимостью следует заключение частного ха­рактера;

аналогия — прием познания, при котором на основе сходства объектов в одних признаках заключают об их сходстве в других признаках;

моделирование — изучение объекта (оригинала) путем созда­ния и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих исследователя;

классификация — разделение всех изучаемых предметов на от­дельные группы в соответствии с каким-либо важным для иссле­дователя признаком (особенно часто используется в описатель­ных — науках во многих разделах биологии, геологии, географии, кристаллографии и т.п.).

Примером конкретно-научных методов, каких множе­ство в каждой науке, является рентгеноструктурный анализ, известная всем из школьного курса хи­мии «лакмусовая бумажка» и пр.

Большое значение в современной науке приобрели статисти­ческие методы. Они позволяют определить средние значения, ха­рактеризующие всю совокупность изучаемых предметов. «Приме­няя статистический метод, мы не можем предсказать поведение отдельного индивидуума совокупности. Мы можем только пред­сказать вероятность того, что он будет вести себя некоторым оп­ределенным образом... Статистические законы можно применять только к большим совокупностям, но не к отдельным индивиду­умам, образующим эти совокупности».

Статистические методы называются так потому, что впервые они были применены в статистике. В противоположность им все другие методы получили название динамических, которые дают однозначные ожидаемые результаты исследования (законы Ньютона в классической механике).

Характерной особенностью современного естествознания яв­ляется то, что методы исследования все в большей степени вли­яют на его результат (так называемая «проблема прибора» в кван­товой механике).

Следует различать методологию науки как учение о методах и методику как описание применения конкретных методов иссле­дования.

 

Лекция

Характерные черты науки.

При рассмотрении такого многогранного явления, как наука, можно выделить три его стороны: отрасль культуры; способ познания мира и социальный институт (в понятие социального института в данном контексте входит организация научной деятельности, т.е. не только высшие учебные заведе­ния, но и научные общества, академии, лаборатории, издание журналов и т.п.).

Как и другим сферам человеческой деятельности, науке при­сущи специфические черты.

1. Универсальность — наука сообщает знания, истинные для всего универсума при тех условиях, при которых они добыты челове­ком. Научные законы действуют во всей Вселенной.

2. Фрагментарность — наука изучает не бытие в целом, а фраг­менты реальности или ее параметры; сама же делится на различ­ные дисциплины. Вообще понятие бытия как философское не применимо к науке, представляющей собой частное познание. Каждая наука как таковая есть определенная проекция на мир, своеобразный прожектор, высвечивающий области, которая пред­ставляет интерес для ученых в данный момент.

3. Общезначимость — научные знания пригодны для всех лю­дей; язык науки однозначно фиксирует термины, что способству­ет объединению людей.

4. Безличность — ни индивидуальные особенности ученого, ни его национальность или место проживания никак не представле­ны в конечных результатах научного познания.

5. Систематичность — наука имеет определенную структуру, а не является бессвязным набором частей.

6. Незавершенность — хотя научное знание безгранично расши­ряется, оно не может достичь абсолютной истины, после которой уже нечего будет исследовать.

7. Преемственность — новые знания определенным образом и по определенным правилам соотносятся со старыми знаниями.

8. Критичность — всегда готовность поставить под сомнение и пересмотреть свои результаты.

9. Достоверность — научные выводы требуют, допускают и про­ходят проверку по определенным-, четко сформулированным пра­вилам.

10. Внеморалъностъ — научные истины нейтральны в морально- этическом плане, а нравственные оценки могут относиться либо к деятельности по получению знания (этика ученого требует от него интеллектуальной честности и мужества в процессе поиска истины), либо к деятельности по его применению.

11. Рациональность — получение знаний на основе рациональ­ных процедур. Составными частями научной рациональности яв­ляются: понятийность, т. е. способность определять термины пу­тем выявления наиболее важных свойств данного класса предме­тов; логичность, т. е. использование законов формальной логики; дискурсивность, т.е. способность раскладывать научные утверж­дения на составные части.

12. Чувственность — научные результаты требуют эмпириче­ской проверки с использованием восприятия и только после это­го признаются достоверными.

Эти свойства науки образуют 6 диалектических пар, соотнося­щихся друг с другом: универсальность — фрагментарность, обще­значимость — безличность, систематичность — незавершенность, преемственность — критичность, достоверность — внеморальность, рациональность — чувственность.

Кроме того, для науки характерны свои особые методы и струк­тура исследований, язык и аппаратура. Всем этим и определяется специфика научного исследования и значение науки.

Отмеченные характерные черты науки по зволяют отличить ее от всех других отраслей культуры.

 

Отличие науки от других отраслей культуры.

Отличие науки от мистики заключается

в стремлении не к слиянию с объектом ис­следования, а к его теоретическому пониманию и воспроизведе­нию.

От искусства наука отличается рациональностью, не останав­ливающейся на уровне образов, а доведенной до уровня теорий.

В отличие от мифологии наука стремится не к объяснению мира в целом, а к формулированию законов развития природы, допус­кающих эмпирическую проверку.

От философии науку отличает то, что ее выводы допускают эм­пирическую проверку и отвечают не на вопрос «почему?», а на вопросы «как?», «каким образом?».

Наука отличается от религии тем, что разум и опора на чув­ственную реальность имеют в ней большее значение, чем вера.

По сравнению с идеологией научные истины общезначимы и не зависят от интересов определенных слоев общества.

В отличие от техники наука нацелена не на использование полу­ченных знаний о мире для его преобразования, а на познание мира.

От обыденного сознания наука отличается теоретическим ос­воением действительности.

 

Лекция