МЕТОДЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА 4 страница

В приготовленных титрованных растворах вычисляют поправочный коэффициент к молярной концентрации (К). Он представляет собой отношение полученной концентрации к теоретически заданной и должен быть в пределе 0,98-1,02. При больших отклонениях величины К титрованных растворов необходимо повысить концентрацию или разбавить раствор и вновь вычислить поправочный коэффициент.

Химические вещества, позволяющие при титриметрических определениях устанавливать прибавление эквивалентного количества титранта к анализируемому веществу, называют индикаторами. Изменения, происходящие с ними в точке эквивалентности, устанавливают визуальными или инструментальными способами. В зависимости от типа используемых при анализе химических реакций индикаторы делят на кислотно-основные для водных и неводных средств, металлохромные, используемые в комплексонометрии, адсорбционные и окислительно-восстановительные. Растворы индикаторов и индикаторные смеси готовят из веществ классификации «химически чистый» (х. ч.) или «чистый для анализа» (ч. д. а.), такой же квалификации должны быть и другие, используемые при приготовлении растворов и смесей, вспомогательные вещества. В ГФ XI, вып. 2 с. 82— 102 приведены рациональные химические названия, физические свойства, способы приготовления растворов, индикаторов и индикаторных смесей, интервалы рН, при которых происходит переход окраски их растворов, а также описание индикаторной бумаги.

Используемые в фармацевтическом анализе титриметрические методы можно подразделить на осадительное титрирование, кислотно-основное, окислительно-восстановительное, комплексонометрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельных элементов или функциональных групп, без предварительной деструкции молекулы или после ее деструкции. Указанные методы являются групповыми и не всегда дают возможность судить о доброкачественности вещества, поскольку фармакологические свойства лекарственных веществ зависят не только от указанных выше идентифицированных групп.

Осадительное титрирование включает в себя: аргентометрическое титрование, меркуриметрию и меркурометрию.

Аргентометрия основана на реакциях осаждения галогенов раствором нитрата серебра (титрант) и может быть выполнена прямым и обратным методами. Эквивалентную точку при прямом методе устанавливают с помощью индикатора хромата калия (метод Мора) или с адсорбционными индикаторами (метод Фаянса). При обратном аргентометрическом титровании (метод Фольгарда) индикатором избыток нитрата серебра оттитровывают тиоцианатом аммония. Этот же химический процесс лежит в основе количественного определения серебра и известен под названием тиоцианатометрии или рода-нометрии. Обоими методами определяют неорганические лекарственные вещества — галогениды (хлориды, бромиды, йодиды), щелочные металлы, галогениды четвертичных аммониевых оснований (пента-мин) и соли галогеноводородных кислот (гидрохлориды, гидробромиды, гидройодиды), органических оснований (ганглерон, тримека-ин, ксикаин), в том числе алкалоидов (морфина гидрохлорид, пахи-карпина гидройодид).

Прямой метод используют для количественного определения йод-метилатов органических оснований (метацин), дийодметилатов (ди-тилин), йодэтилатов (кватерон). Этим же методом определяют сульфаниламиды, образующие соли серебра.

Обратной аргентометрией можно определить препараты натрия я-аминосалицилат, меркаптопурин, этоксид, образующие соли серебра.

Для аргентометрического определения органических веществ, содержащих галогены, связанные с органической частью молекулы, необходимо атомы галогенов предварительно превратить в ионы. При этом используют термические методы, а также щелочные или восстановительное дегалогенирование.

Меркуриметрия основана на образовании малодиссоциированных соединений ртути (II). Например, при взаимодействии нитрата ртути с хлорид-ионами получается малодиссоциированный дихлорид ртути. При титровании хлоридов в качестве индикаторов используют дифенилкарбазид или дифенилкарбазон. В эквивалентной точке они образуют сиреневого цвета комплексные соединения с ионом ртути (И), содержащимся в точке титранта.

Меркурометрия в отличие от меркуриметрии используют для определения анионов (в основном галогенидов), образующих малорастворимые соединения с катионами ртути (I), содержащимися в тит-ранте. При определении галогенидов в качестве индикаторов используют также бромфеноловый синий и дифенилкарбазон, но в отличие от кислотно-основного и меркуриметрического титрования они выполняют роль адсорбционных индикаторов (подобно эозина-ту натрия в аргентометрии).

Кроме выше перечисленных методов при осадительном титровании используют висмутометрию, пикриновую кислоту, определение по сульфат-иону.

Кислотно-основное титрование (метод нейтрализации) наиболее широко применяют в фармацевтическом анализе. Его используют для определения более 40% фармакопейных лекарственных веществ.

Титрование в водной среде заключается в том, что растворимые в воде вещества с кислотными свойствами титруют растворами гидроксида натрия, а вещества основного характера — растворами соляной или серной кислоты. В качестве индикаторов используют красители, изменяющие окраску в широком диапазоне рН — от 1,2 до 10,5. В фармакопейном анализе наиболее часто используют: метиловый оранжевый (3,1—4,4), метиловый красный (4,8—6,0), бромтимоловый синий (6,0—7,6), феноловый красный (6,4—8,0), фенолфталеин (8,2— 10,0) и тимолфталеин (9,4-10,6).

Ацидометрией определяют натриевые соли неорганических и органических кислот (натрия гидрокарбонат и тетраборат, калия ацетат, натрия бензоат, натрия салицилат, натрия л-аминосалицилат, кофеин-бензоат натрия и др.), используя в качестве титранта соляную кислоту, в том числе определяют соли барбитуратов.

Алкалиметрию используют для количественного определения лекарственных веществ, представляющих собой неорганические (соляная, борная) и органические (уксусная, лимонная, глутаминовая, аскорбиновая, никотиновая) кислоты, а также вещества сложной гетероциклической структуры, содержащие в молекуле карбоксильную группу (салюзид). Соли органических оснований (в том числе алкалоидов, витаминов) определяют по связанной соляной, азотной или фосфорной кислоте (хинозол, секуринина нитрат, пиридоксина гидрохлорид и др.). Щелочью также титрируют лактаты, гидротартраты органических оснований.

Иногда, например при определении препаратов ртути (II), используют косвенную нейтрализацию. Ртути оксид желтый, амихло- . рид и цианид под действием йодида калия образуют гидроксид калия или аммиак, которые затем титрируют соляной кислотой.

Формольное титрование (метод Серенсена). Первичные алифатические и ароматические аминокислоты и их соли (кислота амино-капроновая, калия и магния аспарагинаты, кислота глутаминовая, ПАСК-натрий), взаимодействуя с раствором формальдегида, образуют азометины. При этом происходит усиление кислотных свойств аминокислоты и ее титруют раствором гидроксида натрия с индикатором фенолфталеином, натриевые соли (ПАСК-натрий) титруют методом формольного титрирования в среде смешанных растворителей (смесь метанола и ацетона) с использованием индикатора тимолового синего.

Оксимный метод основан на нейтрализации эквивалентного количества соляной кислоты, выделившейся в результате взаимодействия гидроксиламина гидрохлорида с кетопроизводными. Метод применяют для определения бициклических терпенов (камфора) и стероидных соединений, содержащих в молекуле кетогруппу.

Косвенное определение алкалоидов теобромина и теофиллина проводят реакцией осаждения ионами серебра, сопровождающейся выделением эквивалентного количества азотной кислоты, которую затем выявляют алкалиметрическим методом. Аналогичный принцип лежит в основе определения мерказолина.

Титрование в смешанных растворителях, состоящих из воды и органических растворителей, проводят тогда, когда препарат плохо растворим в воде или водные растворы имеют слабо выраженные кислотные (щелочные) свойства. Так, при алкалиметрическом титровании плохо растворимых в воде органических кислот (ацетилсалициловой, салициловой, бензойной, цинхофена) растворителем служит спирт, а титрантом — водный раствор гидроксида натрия. Смешанные растворители (спирт-вода или ацетон-вода) используют для алкалиметрического титрования сульфаниламидов. Не смешивающиеся между собой растворители (воду и хлороформ) сочетают при определении некоторых солей органических оснований — производных я-аминобензойной кислоты.

Титрование в среде неводных растворителей (неводное титрование) применяют для веществ, обладающих кислотными и основными свойствами, но трудно растворимых в воде. При этом можно осуществлять выбор неорганического растворителя, который способен изменять силу кислотных или основных свойств вещества. В качестве тит-рантов используют растворы сильных кислот и оснований. Метод требует наличия герметизированной титровальной установки.

Неводное титрование органических оснований (и их солей) выполняют, используя в качестве растворителя безводную уксусную кислоту с уксусным ангидридом. Титрантом служит раствор уксусной кислоты, а индикатором — раствор кристаллического фиолетового, тропеолина 00 или метилового оранжевого. Хлорной кислотой в неводной среде титруют соли сильных оснований и слабых кислот (калия ацетат). По этой схеме можно оттитровать многие лекарственные вещества основного характера (производные пиразолона — амидопирин; пиридина — никотинамид, фтивазид; основания различной структуры — адреналин, норадреналин, гидротартраты, нит-ранол, хингамин, трихомонацид, нафтамон и др.). Исключение составляют галогениды четвертичных аммониевых оснований и соли галогеноводородных кислот (гидрохлориды, гидробромиды, гидройо-диды органических оснований). Поэтому галогеноводороды титруют в присутствии ацетата ртути (II) или в качестве растворителей используют смесь муравьиной кислоты и уксусного ангидрида 1:20.

Неводное титрирование органических веществ, проявляющих кислотные свойства, выполняют, используя обычно в качестве растворителя диэтил форм амид или его смесь с бензолом, а также этилен-диамин, бутиламин, пиридин. Титрантом служит раствор гидроксида натрия в смеси метилового спирта и бензола или раствор метилата натрия (лития), индикатор — тимоловый синий. Определяют фенолы, карбоновые кислоты, аминокислоты, сульфаниламиды, барбитураты, производные тиоурацила и др. Барбитал, фенобарбитал, фталазол титрируют в среде диметилформамида раствором гидроксида натрия, а вещества с более слабо выраженными кислотными свойствами (фенолы) — раствором метилата натрия.

Окислительно-восстановительное титрирование предусматривает использование йодометрии, йодхлорометрии, броматомет-рии, дихроматометрии, перманганатометрии, периметрии.

Йодометрия основана на использовании окислительных свойств свободного йода и восстановительных свойств йодид-ионов. Этим методом определяют количество органических и неорганических веществ, способных окисляться или восстанавливаться, а также образовывать с йодидом продукты замещения. Индикатором служит крахмал, образующий с йодидом соединение, окрашенное в синий цвет (определяют: натрия тиосульфат, препараты мышьяка (Ш), хлоралгидрат, формальдегид, фурацилин, метионин, анальгин и др.).

Йодометрию используют для определения фтивазида, апрессина и кислоты аскорбиновой. Происходит процесс окисления веществ титрованным раствором йодата калия. Избыток титранта устанавливают йодометрическим методом.

Вещества, образующие осадки, — полийодиды также можно опреде- -лять этим методом: ряд алкалоидов (хинина гидрохлорид, папаверина гидрохлорид, кодеин, кофеин, кокаина гидрохлорид, пахикарпина гид-ройодид), витаминов (тиамина бромид), гетероциклические основания и их соли (хинозол, спазмолитин, дипрофен, дибазол, карбахолин, ква-терон, амидопирин), четвертичные аммониевые соли (прозерин) и др.

Иодхлорометрия — метод аналогичный йодометрии, но отличается тем, что в качестве титранта используют раствор йодмонохлорида, обладающего большей устойчивостью. По ГФ этим методом определяют этакридина лактат. Также можно определять фенолы, сульфаниламиды, производные я-аминобензойной кислоты и другие первичные ароматические амины.

В броматометрии в качестве титранта используют бромат калия, проявляющий в кислой среде окислительные свойства. Определение обычно ведут в присутствии бромида. Индикаторами служат красители из азосоединений (метиловый красный и оранжевый), которые окисляются и обесцвечиваются под действием избытка титранта после достижения эквивалентной точки. Этим методом определяют неорганические соединения мышьяка и элементоорганические, но после предварительной минерализации. При количественном определении производных фенолов (фенол, тимол, резорцин, салициловая кислота) и первичных ароматических аминов используют метод обратной броматометрии. Вьщеляющийся бром (в присутствии бромида) расходуется на галогенирование фенолов или аминов, образуя ди- или трибром-производные. Избыток брома определяют йодометрическим методом.

На основе бромат-бромидной реакции разработаны методы кинетического определения фенола, фентоламина гидрохлорида, карби-дина, апрессина, производных я-аминобензойной кислоты в готовых лекарственных формах.

Дихроматометрия — метод, основанный на осаждении титрованным раствором дихромата калия некоторых солей органических оснований (метиленовый синий, акрихин). Нерастворимые дихроматы оснований отфильтровывают, а избыток титранта определяют йодометрическим методом.

Перманганатометрия основана на использовании перманганата калия (титрант) в сильнокислой среде. При прямом титрировании индикатором является сам титрант, избыток которого придает раствору розовое окрашивание. Прямым титрованием определяют железо, восстановленное и пероксид водорода. Натрия нитрит определяют обратным титрированием. Избыток титранта устанавливают йодометрически. Определение йодидов щелочных металлов и органически связанного йода в раде иодорганических веществ также можно произвести окислением перманганата калия в сернокислой среде до йодноватой кислоты с последующим ее титрованием йодометрическим методом. Этот способ имеет преимущества перед фармакопейным, основанным на восстановительной минерализации с аргенто-метрическим окончанием.

Цериметрия основана на использовании в качестве титранта солей церия (IV), которые в кислой среде восстанавливаются до церия (III). Индикаторами служат дифениламин или о-фенантролин (фе-роин). При обратном титрировании избыток титранта (сульфат церия) определяют йодометрически. Цериметрию используют в анализе как неорганических [железа (II), мышьяка], так и органических (углеводов, органических кислот, производных фенотиазина) лекарственных веществ, а также для определения викасола, токоферола ацетата и производных бензотиадиазепина (дихлотиазид). Преимущества метода — соединения церия (IV) обладают устойчивостью в титрированных растворах и не образуют промежуточных продуктов взаимодействия.

Комплексонометрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трило-ном Б — динатриевой солью этилендиаминтетрауксусной кислоты (ЭДТА) или другими комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона. Метод применяют для определения неорганических и элементоорга-нических лекарственных препаратов, содержащих ионы магния, калия, цинка, висмута, свинца, алюминия и др. Для визуального установления точки эквивалентности используют индикаторы, называемые металлоиндикаторами, представляющие собой органические красители, которые образуют с указанными ионами непрочные ярко окрашенные комплексы. В конце титрования комплексы разрушаются, меняя окраску в эквивалентной точке.

В ГФ металлоиндикаторами используют ксиленоловый оранжевый, хальконкарбоновую кислоту, хромовый темно-синий (кислотный хром темно-синий), эриохром черный Т (протравной черный II). Применяют прямое и обратное титрование.

Нитритометрия основана на реакциях первичных ароматических аминов с нитритом натрия, который используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия диазосоединения в кислой среде. Эквивалентную точку устанавливают с помощью внешних (йодкрахмальная бумага) и внутренних индикаторов (тропеолин 00, нейтральный красный, смесь тропеолина 00 с метиленовым синим) или потенциометрически (индикатор — платиновый электрод, а электрод сравнения — хлорсереб-ряный или насыщенный каломельный). Метод применяют для определения сульфаниламидов, производных л-аминобензойной кислоты (анестезин, новокаин, новокаинамид), л-аминосалициловой кислоты (натрия л-аминосалицилат), представляющих собой первичные ароматические амины, а также вторичные амины (дикаин).

Газометрический анализ имеет ограниченное применение в фармацевтическом анализе. Определяют газообразные вещества — кислород, циклопропан. Сущность определения кислорода заключается во взаимодействии его с поглотительным раствором, содержащим легкоокисляющийся медно-аммиачный комплекс. Опре- деление проводят на приборе Гемпеля, измеряя объем непрореагиро-вавшего газа (ГФ IX, с. 349). Аналогично определяют циклопропан (ГФХ, с. 228).

Количественный элементный анализ используютдля определения органических и элементоорганических соединений, содержащих азот, серу, галогены, а также мышьяк, висмут, ртуть, сурьму и другие элементы.

Фармакопейный метод определения азота в органических соединениях известен как метод Кьельдаля. Он основан на сочетании минерализации органического вещества с последующим кислотно-основным титрованием. Используют для анализа азотсодержащих органических веществ, а также лекарственных веществ, содержащих аминный, амидный и гетероциклический азот. Определение проводится в несколько стадий. Существует упрощенный вариант метода, исключающий минерализацию.

Метод сжигания в колбе с кислородом ~ перспективный в фармацевтическом анализе. Основан на разрушении органического вещества (сжигание в колбе с кислородом), растворении образовавшихся продуктов в поглощающей жидкости и последующим определении элементов, находящихся в растворе в виде ионов или молекул. Определение выполняют химическими или физико-химическими методами. Выявляют органические вещества, содержащие в молекуле галогены, серу, фосфор, азот и другие элементы. Преимущества метода — быстрота и отсутствие минерализации. ГФ рекомендует метод для определения йода в йодоорганических веществах. Однако исследования показывают, что он пригоден для определения многих других веществ.

Количественный элементный анализ галоген-, мышьяк- и ртутьсодержащих лекарственных веществ с предварительной минерализацией. ГФ рекомендует метод для определения йодосодержащих органических лекарственных веществ, основанный на минерализации и окислении образовавшегося иона йода в йодат-ион. Последний регистрируют, используя в качестве восстановителя йодит калия по общему принципу йодотометрии. Аналогично определяются галогены, мышьяк и ртуть.

Физические и физико-химические способы анализа.Эти методы приобретают все большее значение как недеструктивный анализ (без разрушения анализируемого объекта). Для его выполнения пригодны многие физические и физико-химические методы, такие, как оптические ЯМР-, ПРМ-, УФ- и ИК-спектроскопия, ГЖХ, ВЭЖХ и др. В фармацевтическом анализе эти методы классифицированы на следующие группы: оптические; основанные на поглощении излучения; основанные на испускании излучения; основанные на использовании магнитного поля; электрохимические; разделения; термические. Эти методы имеют ряд преимуществ перед химическими. Они основаны на использовании как химических, так и физических свойств веществ и в большинстве случаев отличаются экспрессивностью, возможностью унификации и автоматизации.

Оптические методы основаны на определении показателя преломления луча света в растворе испытуемого вещества (рефрактометрия), измерении интерференции света в растворе испытуемого вещества (интерферометрия), способности раствора вещества вращать плоскость поляризованного луча (поляриметрия).

Рефрактометрию используют для испытания подлинности лекарственных веществ, представляющих собой жидкости (диэтиламид никотиновой кислоты, метилсалицилат, токоферола ацетат), а также для внутриаптечного контроля лекарственных форм, в том числе двойных и тройных смесей.

Интерферометрический метод используют для анализа лекарственных препаратов, титрованных растворов и дистиллированной воды.

Поляриметрию применяют для анализа веществ, в молекуле которых имеется асимметричный атом углерода.

Помимо этих методов используют химическую микроскопию и др.

Методы, основанные на поглощении излучения (абсорбционные методы), используют свойства веществ поглощать свет в различных областях спектра.

Атомно-абсорбционная спектрофотометрия основана на использовании ультрафиолетового или видимого излучения резонансной чистоты. Поглощение излучения вызывается переходом электронов с внешних орбиталей атомов на орбитали с более высокой энергией. Объектами, поглощающими излучение, являются газообразные атомы, а также некоторые органические вещества. Сущность этого метода состоит в том, что через пламя, в котором распыляется анализируемый раствор, проходит резонансное излучение от лампы с полым катодом. Это излучение попадает на входную щель монохрома-тора, причем из спектра выделяется только резонансная линия испытуемого элемента. Расчет концентрации производят с помощью специального уравнения. Имеются специальные атомно-абсорбционные спектрометры.

Ультрафиолетовая спектрофотометрия — наиболее простой абсорбционный метод анализа. Он разработан для анализа многих лекарственных веществ, методики которых изложены в различных НТД и ГФ XI.

Дифференциальные методы позволяют расширить область применения фотометрии в фармацевтическом анализе. Например, сущность метода дифференциальной спектрофотометрии и фотоколориметрии, включенного в ГФ XI, вып. I, с. 40, состоит в изменении светопоглощения анализируемого раствора относительно раствора сравнения, содержащего определенное количество испытуемого вещества.

Фотоколориметрический метод широко применяют в фармацевтическом анализе. В отличие от УФ-спектрофотометрии определение в этом случае осуществляют в видимой области спектра, при этом вещество с помощью какого-либо реагента переводят в окрашенное соединение, а затем измеряют интенсивность окраски раствора в фотоколориметре. Метод включен в НТД для количественного определения ряда нитропроизводных (нитроглицерина, фурадонина, фуразолидона), а также витаминов (рибофлавина, фолиевой кислоты) и сердечных гликозидов (целанида). Разработаны многочисленные методики фотоколориметрического определения препаратов в лекарственных формах.

Кроме того, в фармацевтическом анализе используют фототурбодиметрию и фотонефелометрию, хронофототурбодиметрию, термонефелометрию и инфракрасную (ИК) спектроскопию и их различные модификации.

К методам, основанным на испускании излучения, относят фотометрию пламени, флуоресцентные и радиохимические методы.

Эмиссионная и пламенная спектрометрия включена в ГФ XI для качественного и количественного определения химических элементов и их примесей в лекарственных веществах. Измерение интенсивности излучения спектральных линий испытуемых элементов выполняют на пламенных фотометрах. Регистрирующими системами служат фотоэлементы, связанные с цифровыми и печатающими устройствами. Точность определения этими методами находится в пределах 1—4% , предел обнаружения может достигать 0,001 мкг/мл.

Люминесцентные методы основаны на измерении вторичного излучения, возникающего в результате воздействия света на анализируемое вещество. К их числу относят флуоресцентные методы, хе-милюминесцентные методы, рентгенофлуоресценцию и др., для чего используют ряд приборов, например спектрофлуориметры, сравнивая на них показания испытуемых образцов со свидетелями (эталонными образцами).

К методам, основанным на использовании магнитного поля, относятся ЯМР- и ПМР-спектроскопии, масс-спектроскопия, отличающиеся высокой специфичностью, чувствительностью и возможностью анализировать многокомпонентные смеси, в том числе лекарственные формы без предварительного их разделения. При использовании данных методов подлинность лекарственных веществ может быть подтверждена либо по полному набору спектральных параметров, характеризующих структуру данного соединения, либо по наиболее характерным сигналам спектра. Подлинность можно установить с помощью стандартного образца, добавляя его количество к анализируемому раствору. Полное совпадение спектров анализируемого вещества и его смеси со стандартным образцом указывает на их идентичность. В специальных аннотациях изложены правила работы со спектрофотометрами и другой аппаратурой, используемой для этих методов, а также указаны лекарственные вещества, которые можно определять ими.

Электрохимические методы анализа основаны на электрохимических явлениях, происходящих в исследуемой среде и связанных с изменениями химической структуры, физических свойств или концентрации веществ.

Потенциометрия основана на измерении равновесных потенциалов, возникающих на границе между испытуемым раствором и погруженным в него электродом (ГФ XI, вып. 1, с. 121).

Амперометрическое титрирование с двумя индикаторными электродами, или титрирование «до полного прекращения тока», основано на использовании пары идентичных инертных электродов (платина, золото), которые находятся под небольшим напряжением. Часто используют для нитритойодометрического титрования. Точку эквивалентности находят по резкому увеличению силы тока, проходящего через ячейку (в течение 30 с) после добавления последней порции реагента (ГФ XI, вып. 1, с. 123). Разновидностью этого метода является ионометрия с использованием ионоселективных электродов.

Полярография — метод анализа, основанный на измерении силы тока, возникающего на микроэлектроде при электровосстановлении или элек-троокислении анализируемого вещества в растворе. Электролиз проводят в полярографической ячейке, которая состоит из электролизера (сосуда) и двух электродов. Используют методы калибровочных кривых, стандартных растворов и добавок (ГФ XI, вып. 1, с. 154).

Кроме того, из электрохимических методов можно использовать кондуктометрию, кулонометрию и метод диэлектрических измерений.

К методам разделения, которые часто используют в фармацевтическом анализе, относятся хроматография, электрофорез и экстракция.

Хроматографические методы разделения веществ основаны на их распределении между двумя фазами: подвижной и неподвижной. Подвижной фазой может быть жидкость или газ, неподвижной — твердое вещество или жидкость, адсорбированная на твердом носителе. Отношение скорости перемещения вещества к скорости перемещения растворителя обозначают Rf. Эта величина — константа вещества для данных условий разделения и используется для идентификации. Хроматофафия дает возможность наиболее эффективно осуществлять избирательное распределение компонентов анализируемого вещества (очень важно при исследовании смеси из нескольких веществ). По механизму процесса разделения хроматофа-фические методы классифицируют на ионообменную, адсорбционную, осадочную, распределительную, окислительно-восстановительную хроматографию. По форме проведения процесса выделяют колоночную, капиллярную и плоскостную хроматографию. Подробное описание приборов и методик изложено в ГФ XI, вып. I, с. 98 и другой НТД.

К данным методам относят и газожидкостную (газовую) хрома-тофафию (ГЖХ), основанную на распределении вещества между газовой и жидкой или твердой фазами, а также жидкостную хромато-фафию (ЖХ), отличающуюся от газовой тем, что подвижной фазой служит не газ, а жидкость. Вариантом последней ЖХ является высокоэффективная жидкостная хроматофафия (ВЭЖХ), которую называют также жидкостной хроматофафией высокого давления.

Широкое применение при анализе получила хроматофафия в тонком слое сорбента (ТСХ, ГФ XI, вып. 1, с. 102), отличающаяся от хроматофафии на бумаге тем, что процесс, протекающий при перемещении подвижной фазы, происходит на сорбенте, нанесенном тонким слоем на инертную поверхность, чем достигается высокая чувствительность, простота использования и устойчивость к температурным и химическим воздействиям.

Иногда для идентификации ряда лекарственных веществ сочетают ТСХ с ИК-спектроскопией, УФ-спектроскопией и другими методами и их модификациями.

Электрофорез на бумаге и в тонких слоях сорбента по технике выполнения и аналитическим возможностям сходен с ТСХ. В ГФ XI включен электрофорез, как метод анализа, основанный на способности перемещения заряженных частиц в электрическом поле и их регистрации. Различают фронтальный, зональный электрофорез, иммуноэлектрофорез и метод пептидных карт (сочетание бумажной и тонкослойной хроматофафии с высоковольтным электрофорезом).

Термические методы анализа. В зависимости от природы веществ, температуры и условий нафевания в них могут происходить химические превращения, структурирование, термическая, окислительная или гидролитическая деструкция. Термическая деструкция сопровождается поглощением или выделением теплоты, а также выделением газов, которые можно фиксировать.

Термография позволяет оценить термическую стабильность по температурам термоэффекта связанного с деструкцией вещества, поэтому термический анализ находит применения в фармацевтической химии.

Термический анализ основан на точной (до 0,1 °С) регистрации равновесного состояния между кристаллической и жидкой фазами анализируемого вещества. Основные недостатки этого метода: невозможность использования для исследования термолабильных веществ; значительные затраты времени; отсутствие должной воспроизводимости. Существует несколько модификаций метода: термомикроскопический метод; дифференциальный термический анализ; дериватогра-фия; дифференциальная сканирующая колориметрия; метод дифференциальной микроколориметрии, термофрактография и др.