Разложение рациональной дроби на элементарные

Полином – знаменатель рациональной дроби может иметь действительный корень некоторой - ой кратности. Тогда , где многочлен уже не имеет корня . В этом случае из рациональной дроби можно выделить элементарную рациональную дробь вида .

 

Лемма 2.Пусть - действительный корень - ой кратности полинома – знаменателя рациональной дроби. Тогда

= , где многочлен уже не имеет корня .

 

Доказательство. Приведем дроби к общему знаменателю и приравняем числители полученных дробей.

. Тогда выражение должно делиться на , т.е. . Этого можно добиться, выбрав .

Следствие 1.В условиях леммы 2 рациональную дробь можно представить в виде

где не имеет корня .

Доказательство. Применим лемму 2 раз и получим указанное разложение.

 

Полином – знаменатель рациональной дроби может иметь пару комплексно сопряженных корней - ой кратности. Тогда Причем уже не являются корнями полинома . В этом случае из рациональной дроби тоже можно выделить некоторую элементарную рациональную дробь вида .

Лемма 3.Пусть – знаменатель рациональной дроби имеет пару комплексно сопряженных корней - ой кратности. Тогда рациональную дробь можно представить в виде

= , где уже не являются корнями полинома .

Доказательство. Приведем дроби к общему знаменателю и приравняем числители полученных дробей.

= . должно делиться как на , так и на . Поэтому

, где = , =

Отсюда имеем систему уравнений для определения констант

.

Определитель этой системы равен , так как корни комплексные и . Поэтому система имеет единственное решение.

 

Следствие 2.В условиях леммы 2 рациональную дробь можно представить в виде

= + + …+ + ,

где уже не являются корнями полинома .

Доказательство. Применяем лемму 3 нужное число раз и получаем искомое разложение.

 

 

Теорема.Рациональная функция может быть представлена в виде

 

= + +…+ +…+ + + …+ + …+ ,

где - простой действительный корень , - действительный корень кратности , - пара комплексно сопряженных корней кратности (комплексно сопряженные корни ), - простая пара комплексно сопряженных корней (корни ).

 

Доказательство. Применяем к рациональной функции лемму 1, выделяем полином – целую часть , затем по лемме 2, выделяем члены разложения, соответствующие простым и кратным действительным корням. Затем по лемме 3 выделяем члены разложения, соответствующие простым и кратным парам комплексно сопряженных корней. Так как многочлен может иметь корни лишь перечисленных типов, то разложение этим и исчерпывается.

 

Следствие 3. Задача интегрирования рациональной функции сводится к задачам интегрирования элементарных рациональных дробей четырех типов

1) , 2) , 3) , 4) .