Вычисление площадей плоских фигур

1) Фигура ограничена графиком функции, заданной в декартовой системе координат.

Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция принимает только неотрицательные значения, то площадь под графиком функции на отрезке [a, b] может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов.

Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади.

Можно вычислять площадь по формуле S= . Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения.

Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой S= , так как .

Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x2, y=x3.

Заметим, что на интервале (0,1) выполнено неравенство x2 > x3, а при x >1 выполнено неравенство x3 > x2. Поэтому

 

 

2. Фигура ограничена графиком функции, заданной в полярной системе координат.

 

Пусть график функции задан в полярной системе координат и мы хотим вычислить площадь криволинейного сектора, ограниченного двумя лучами и графиком функции в полярной системе координат.

Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности .

Можно использовать и метод дифференциалов: .

Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем .

Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна .

Пример. Вычислим площадь, ограниченную кардиоидой .

 

3 Фигура ограничена графиком функции, заданной параметрически.

Функция может быть задана параметрически в виде . Используем формулу S= , подставляя в нее и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком.

Пример. Вычислить площадь, ограниченную эллипсом .

Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому .

 

Вычисление объемов тел.

1) Вычисление объемов тел по площадям параллельных сечений.

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка [a, b] прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком объемом прямого кругового цилиндра с площадью основания и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

.

2) Вычисление объемов тел вращения.

Пусть требуется вычислить объем тела вращения вокруг оси OX.

Тогда .

Аналогично, объем тела вращения вокруг оси OY, если функция задана в виде , можно вычислить по формуле .

Если функция задана в виде и требуется определить объем тела вращения вокруг оси OY, то формулу для вычисления объема можно получить следующим образом.

Переходя к дифференциалу и пренебрегая квадратичными членами, имеем . Интегрируя и применяя формулу Ньютона – Лейбница, имеем .

Пример. Вычислить объем шара .

Пример. Вычислить объем прямого кругового конуса, ограниченного поверхностью и плоскостью .

Вычислим объем, как объем тела вращения, образованного вращением вокруг оси OZ прямоугольного треугольника в плоскости OXZ, катеты которого лежат на оси OZ и прямой z = H , а гипотенуза лежит на прямой .

Выражая x через z, получим .

Искомый объем можно посчитать как разность объемов прямого кругового цилиндра с высотой H и тела, вращения, ограниченного цилиндрической, конической поверхностями и плоскостью OXY

.

 

Вычисление длины дуги.

 

Для того, чтобы получить формулы для вычисления длины дуги, вспомним выведенные в 1 семестре формулы для дифференциала длины дуги.

Если дуга представляет собой график непрерывно дифференцируемой функции , дифференциал длины дуги можно вычислить по формуле

. Поэтому

Если гладкая дуга задана параметрически , то

. Поэтому .

Если дуга задана в полярной системе координат, то

. Поэтому .

Пример. Вычислить длину дуги графика функции , . .

Пример. Вычислить длину кардиоиды .

Пример. Вычислить длину одной арки циклоиды. .

.